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Plan of the presentation:

- The dynamics in the PRC3BP for energies close
to the energy of L2.

- The PRE3BP as a perturbation of the PRC3BP

- Lapunov-Moser Theorem and the twist property
on the set of Lapunov orbits.

- KAM Theorem and the persistence of Lapunov
orbits

- A Melnikov type method and transversal inter-
sections of invariant manifolds of KAM tori.

- Concluding remarks
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H(x, y, px, py) =
(px + y)2 + (py − x)2

2
−Ω(x, y)

Jacobi integral:

F (x, y, px, py) = −2H(x, y, px, py)

The constant energy manifold:

M(C) = {(x, y, px, py) ∈ R4|F (x, y, px, py) = C}

Hill’s region:

R(C) = {(x, y) ∈ R2|Ω(x, y) ≥ C/2}
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R(C) = {(x, y) ∈ R2|Ω(x, y) ≥ C/2}
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Various shapes of the Hill’s region

a. C > C2 b. C = C2 c. C < C2



The dynamics in the PRC3BP
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[LMS] J. Llibre, R. Martinez, C. Simo, Tansversality of

the Invariant Manifolds Associated to the Lyapunov Family

of Periodic Orbits Near L2 in the Restricted Three Body

Problem, Jour. of Diff. Eq. 58, 104-156 (1985).



The equations for the PRE3BP
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He(x, y, ẋ, ẏ, t) = H(x, y, ẋ, ẏ) + eG(x, y, t) + O(e2)
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l(t) = reta2(ir2)+iφ

a2(ir
2) = α2 + ir2a2 + ...

Lemma 1 If the coefficient a2 is nonzero then on
the set of Lapunov orbits with a sufficiently small
radius r the time 2π shift along the trajectory is
a twist map.

[M] J. Moser, On the Generalization of a theorem of A.
Liapounoff, Communications on Pure and Applied Mathe-
matics, Vol. xi (1958), 257-278.
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Lemma 2 For sufficiently small masses µ the twist
coefficient a2(µ) of the PRC3BP is approximated
by the twist coefficient aHill

2 of the Hill’s problem

lim
µ→0

µ2/3aµ
2 = aHill

2 .

aHill
2 =

2187
16 (1−2

√
7)32/3(5767

√
7−15274)

(1+2
√

7)2(
√

7−3)2(4
√

7−7)(
√

7−14)2
≈ 8.483
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Theorem 3 For a sufficiently small mass µ > 0
there exists a Cantor set of energies C such that
for any c ∈ C the Lapunov orbit l(c) is perturbed
into an invariant torus let0(c) of the time 2π shift
along the trajectory map Pe

t0
of the PRE3BP

Pe
t0 : Σt0 → Σt0+2π

where Σt0 = {(x, y, px, py, t)|t = t0}.



Outline of the proof:

- The set of Lapunov orbits is normally hyperbolic
and persists under the perturbation.

- Before the perturbation the map Pe=0
t0

is a twist
map which allows us to apply the KAM Theorem
to obtain our result.
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[DLS] A. Delshams, R.de la Llave, T. Seara, A geometric
approach to the existence of orbits with unbounded energy
in generic periodic perturbations by a potential of generic
geodesic flows of T2. Comm. Math. Phys. 209 (2000),
no. 2, 353–392.
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The intersection of the invariant manifolds of the
PRC3BP compared with the situation in the PRE3BP.
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He(x, t) = H(x) + eG(x, t) + O(e2)

q0(t) is the homoclinic orbit to L2

Theorem 4 If

M(t0) =
∫ +∞

−∞
{H, G}(q0(t− t0), t)dt

has simple zeros then for c < C2 sufficiently close
to C2 the manifolds Ws(let0(c), P

e
t0
) and Wu(let0(c), P

e
t0
)

intersect transversally.



Some remarks about the method

∫ +∞

t0
{H, G}(q0(t− t0), t)dt

d(t0) = eM(t0) + O(e∆c) + o(e)
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Computation of the Melnikov function

M(t0) =
∫ +∞

−∞
{H, G}(q0(t− t0), t)dt

R(x, y, px, py, t) := (x,−y,−px, py,−t)

R(q0(t), t) =
(
q0(−t),−t

)
.

{H, G}(R(x, y, px, py, t)) = −{H, G}(x, y, px, py, t).

Lemma 5 For t0 = 0 the Melnikov integral is
equal to zero M(0) = 0.



Lemma 5 For t0 = 0 the Melnikov integral is
equal to zero M(0) = 0.

Proof
∫ 0

−∞
{H, G}(q0(t), t)dt =

∫ +∞

0
{H, G}(q0(−t),−t)dt

=
∫ +∞

0
{H, G}(R(q0(t), t))dt

= −
∫ +∞

0
{H, G}(q0(t), t)dt

M(t0) =
∫ ∞

−∞
{H, G}(q0(t− t0), t)dt.



Computation of Mt0(0)
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Lemma 6 The derivative of the Melnikov func-
tion can be approximated by an integral over the
unstable orbit qH(t) of the Hill’s problem

lim
µ→0

|Mt0(0)| = |
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2{H, G}(qH(t))dt|.

|
∫ ∞

−∞
{H, G}(qH(t))dt| ≈ 2.06
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Theorem 7 For sufficiently small e > 0 and for
sufficiently small masses µ > 0 there exists a
Cantor set of Lapunov orbits which persists from
the PRC3BP to the PRE3BP. What is more the
corresponding stable and unstable manifolds of
the perturbed orbits intersect transversally and
form transition chains. Each transition involves a
change of the energy.



Concluding remarks

- The result holds only for energies sufficiently
close to C2 and for sufficiently small e and µk.

- No bounds on these parameters are given.

- The discussed model has no direct examples in
celestial mechanics.
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Future research?

- It would be desirable to perform a similar argu-
ment for the Jupiter - Sun system.

- Major obstacle (?): Application of the KAM the-
orem for a given eccentricity and for given radius
of the Lapunov orbit .
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