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Motivation

What is it possible to compute about a dynamical system?

What is it impossible to compute??

What should we use as the semantics of a valid
computation?
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Various approaches

Brouwer’s intuitionalist logic. [W.P. van Stigt, Brouwer’s Intuitionism
(1990)]

Markov’s constructive logic and analysis.
Bishop’s constructive analysis. [ Bishop & Bridges, Constructive
analysis (1985) ]

Scott’s domain theory.
Blum, Cucker, Shub and Smale’s real-RAM model. Unrealistic!
[ Blum, Cucker, Shub, Smale, Complexity and real computation (1998) ]

Ko’s oracle machines. [ Ko, Complexity theory of real functions (1991). ]

Weihrauch’s computable analysis. [ Klaus Weihrauch, Computable
analysis - An introduction (2000). ]
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General topology (and philosophy)
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A question...

What do the following have in common?

M K(Rn) C(R→ R)

USC(R ⇒ R) L2(R) B(R2)
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Answer

They are all second-countable Kolmogorov (T0) spaces!!!

Why is this important??
An elements x of a Kolmogorov space is uniquely
specified by giving all basic open sets containing x.
As there are countably many basic open sets, we can
list all basic open sets containing x.
By naming the basic open sets as words in Σ∗, points
of X can be named by sequences in Σω.
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Computable analysis
[ Klaus Weihrauch, Computable analysis - An introduction (2000). ]
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Type-two Turing machines

Turing machine with input, output and work tapes; tape
alphabet Σ.
Computation is performed on sequences (elements of Σω).

×

x

√
2 x

√
2

A type-two machine computes a partial function
η :⊂ Σω × · · · × Σω → Σω.

Theorem If η :⊂ Σω × · · · × Σω → Σω is a type-two
computable function, then η is continuous.
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Naming systems

A notation of a countable set M is a partial surjective
function ν :⊂ Σ∗ →M .
A representation of a set M is a partial surjective function
δ :⊂ Σω →M .
Naming systems γ1 and γ2 are equivalent if each can be
computably converted to the other.

Σ
∗/ω

Σ
∗/ω

M

γ1 γ2

η2

η1
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Computability induced by naming systems

Let δi : Σω →Mi be representations.
A function f : M1 × · · · ×Mk →M0 is (δ1, . . . , δn; δ0)-
computable if there is a Turing-computable function η with

M0

Σ
ωη

f

δk
δ0δ2

Σ
ω
× Σ

ω
× · · · × Σ

ω

M1 × M2 × · · · × Mk

δ1
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Computable topological spaces

A computable topological space is a tuple (X, τ, σ, ν),
where
– (X, τ) is a Kolmogorov space,
– σ is a countable sub-base of τ , and
– ν is a notation for σ.

The standard representation of a computable topological
space is the function δ :⊂ Σω → X defined by
δ〈w1w2 . . .〉 = x :⇐⇒ {ν(w1), ν(w2), . . .} = {J ∈ σ | x ∈ J}.

The standard representation encodes a list of all elements
of σ which contain x.
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Fundamental theorem of computable analysis

Theorem If δi is the standard representation of (Xi, τi, σi, νi)

for i = 0, . . . , k, then any (δ1, . . . , δk; δ0)-computable
function f : X1 × · · · ×Xk → X0 is (τ1, . . . , τk; τ0)-continuous.
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Representations of real numbers
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Standard representation of real numbers

The topology τ of R is generated by rational open intervals

σ = {(a, b) ∈ Q2 | a < b}.

The standard representation ρ of R encodes a list of all
rational open intervals (a, b) containing x ∈ R.
Under the standard representation, addition, subtraction,
multiplication and division are computable.
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Interval representation of real numbers

Alternatively, represent a real number by a nested
sequence of closed bounded rational intervals
In = [an, bn] with In+1 ⊂ In and

⋂∞
n=0 In = {x}.

a1 a2 b1a3 b2b3a4 b4

x

The interval representation is equivalent to the standard
representation.
Note that it is not possible to decide if two numbers are
equal!!
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Decimal representation of real numbers

Arithmetical operations are not computable for the
representation by decimals!!

Consider the computation of x = 4/3 + 2/3 in decimal
representation.
Given finitely many digits, we have

x = 1 · 3333... + 0 · 6666... =?·????...

All we can deduce is that
1.9999 6 1 · 3333 + 0 · 6666 6 x 6 1 · 3334 + 0 · 6667 = 2.0001

Therefore it is impossible to output even the first digit of
the answer!!
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Signed-digit representation of real numbers

The signed-digit representation of real numbers is given
by

x =
n∑

i=−∞
xi2

i, where xi ∈ {−1, 0, 1}.

The signed-digit representation is equivalent to the
standard representation.
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Representations of points and sets
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Computable state spaces

A computable state space is computable topological
space (X, τ, β, ν), where
– (X, τ) is a locally-compact second-countable Hausdorff

space, and
– β is a base for τ consisting of pre-compact open sets.

A set I ∈ β is called a basic open set, and I is a basic
compact set.
A denotable (compact) set is a finite union of basic
compact sets, C =

⋃n
i=1 I i.

Assume that the basic sets are “nice” to work with.
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Representation of points

The standard representation ρ of (X, τ, β, ν) encodes a list
of all elements of β containing x
The standard representation is equivalant to the
representation by sequences (I0, I1, . . .) ∈ βω such that

(i) Ik+1 ⊂ Ik for all k, and
(ii)

⋂∞
k=0 Ik = {x}.

Equivalently, we can take Ik+1 ⊂ Ik in (i).
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Lower representation of open sets

A θ<-name of U ∈ O(X) encodes a list of all basic
compact subsets of U :

{I ∈ β | I ⊂ U}.

Representation θ< of O. Inner approximation.

A θ< name is equivalent to an increasing sequence of
denotable sets (inner approximation).
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Lower representation of closed sets

A ψ<-name of A ∈ A(X) encodes a list of all basic open
sets intersecting A:

{J ∈ β | A ∩ J 6= ∅}.

Representation ψ< of A. Lower approximation.

A ψ< name is equivalent to an “almost increasing”
sequence of denotable sets (lower approximation).
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Upper representation of closed sets

A ψ>-name of A encodes a list of all basic compact sets
disjoint from A:

{I ∈ β | A ∩ I = ∅}.

Representation ψ> of A.
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Upper representation of compact sets

A κ>-name of C ∈ K(X) is encodes a list of all basic open
covers of C:

{(J1, . . . , Jk) ∈ β∗ | C ⊂ J1 ∪ · · · ∪ Jk}.

A κ>-name is equivalent to a ψ>-name and a bounding box.

Representation κ> of K. Outer approximation.

A κ> name is equivalent to a decreasing sequence of
denotable sets (outer approximation).
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Representation of compact sets

A κ-name of C is a combination of a lower ψ<-name and
an upper κ>-name.

κ is the standard representation of the Vietoris topology
on K(X).

Representation κ of K. Approximation in dH .

κ is equivalent to arbitrarily accurate approximation in the
Hausdorff metric dH .
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Computable operators

Union A,B 7→ A ∪B is (ψ<, ψ<;ψ<)-computable and
(ψ>, ψ>;ψ>)-computable.
Intersection A,B 7→ A ∩B is (ψ>, ψ>;ψ>)-computable;
(A,C) 7→ A ∩ C is (ψ>, κ>;κ>)-computable.

Intersection A,B 7→ A ∩B is not (ψ<, ψ<;ψ<)-computable.
Closed intersection (A,U) 7→ cl(A ∩ U) is
(ψ<, θ<;ψ<)-computable.
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Representations of maps
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Representation of continuous functions

The compact-open topology τ co on C(X → Y ) is the
topology of uniform convergence on compact sets.
A δco-name of f encodes a list of pairs (I, J) such that the
image of I is a subset of J :

{(I, J) ∈ βX × βY | f(I) ⊂ J}.
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Evaluation representation

The evaluation representation δ→ of C(X → Y ) encodes a
function f by a function F : βX → βY such that
(i) f(I) ⊂ F(I)

(ii) I1 ⊂ I2 =⇒ F(I1) ⊂ F(I2), and
(iii) If I i+1 ⊂ I i and

⋂∞
i=0 I i = {x}, then

⋂∞
i=0F(I i) = {f(x)}

May alternatively require f(I) ⊂ int(F(I)) in (i).

The evaluation representation is equivalent to the
compact-open representation.
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Computable operators on continuous
functions

Evaluation (f, x) 7→ f(x) is (δco, ρ; ρ)-computable.
Image (f,A) 7→ cl(f(A)) is (δco, ψ<;ψ<)-computable;
(f, C) 7→ f(C) is (δco, κ>;κ>)-computable.
Preimage (f, U) 7→ f−1(U) is (δco, θ<; θ<)-computable;
(f,A) 7→ f−1(A) is (δco, ψ>;ψ>)-computable.

(f,A) 7→ cl(f(A)) is not (δco, ψ>, ψ>)-computable.
(f,A) 7→ f−1(A) is not (δco, ψ<, ψ<)-computable.
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Representation of differentiable functions

The γ(r)-representation of C (r)(X → Y ) consists of a
δco-representation of f and each of its first r derivative.

Operations such as set-image are more efficient using the
γ(1)-representation than the γ(0) = δco representation.
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Representations of multivalued functions

The lower representation µA< of closed-valued lower-
semicontinuous functions LSCA(X ⇒ Y ) encodes all pairs
(I, J) such that I ⊂ F−1(J).

The upper representation µK> of compact-valued upper-
semicontinuous functions USCK(X ⇒ Y ) encodes all
tuples (I, J1, . . . , Jk) such that F (I) ⊂ ⋃k

i=1 Ji.

µA< and µK> are each equivalent to δco if F is a
single-valued continuous function.
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Implementation of computable analysis
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Tools for computable analysis

Set-based analysis
— GAIO [Dellnitz, Junge]

Taylor integration schemes
— AWA[Lohner]

— CAPD [Mrozek, Wilczak, Żelawski, Zgliczyński]

— Cosy [Berz, Makino]

Reachability analysis
— d/dt [Asarin, Dang, Maler]

— Hy(per)Tech [Henzinger et al.]

— Ellipsoidal calculus [Kurzhanski]

— Ariadne [Balluchi, Casagrande, C., Murrieri, Villa]
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Ariadne–Numerical types

double Machine double-precision floating-point.
Fixed precision, inexact arithmetic, FAST!!
MPFloat Multiple-precision floating-point.
Arbitrary precision, inexact arithmetic.
Dyadic Arbitrary precision, exact addition, subtraction,
multiplication and division by 2.
Rational Arbitrary precision, exact arithmetic.

[Gnu Multiple-Precision Library (GMP), MPFR]

Interval<real_type> Interval arithmetic.
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Ariadne–Basic set types

Basic set types include
Simplex
Cuboid
Parallelotope
Zonotope
Polytope
Ellipsoid
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Ariadne–Operations on basic sets

Operations on basic sets
contains
disjoint
interiors_intersect
subset
bounding_box

regular_intersection
minkowski_sum
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Ariadne–Denotable set types

Denotable sets are finite unions of basic sets.
ListSet<basic_set_type>
GridMaskSet, GridCellListSet
PartitionTreeSet
SimplicialComplex
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Ariadne–Maps

Maps are specified using the evaluation representation on
cuboids.

map.apply(cuboid)

Evaluation on other sets for performed using C1 methods.
c1map.derivative(cuboid)
c1map.apply(parallelotope)

Also implement vector fields and control systems.
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Computability in dynamical systems
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Computability of reachable sets

The reachable set from X0 under f is
Reach(f,X0) :={x | ∃ x0, x1, . . . , xn s.t.

x0 ∈ X0, f(xi) = xi+1 and xn = x}.
=

⋃∞
n=0 f

n(X0)

Theorem
(i) The operator (f,A) 7→ clReach(f,A) is (δco, ψ<;ψ<)-

computable.
(ii) clReach is not upper-semicontinuous, so is not

(δco, κ>;ψ>)-computable.

Look for an upper-semicontinuous over-approximation to
Reach.
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Computability of chain reachability

An ε-chain is a sequence (x0, x1, . . . , xn) such that there
exist yi with yi+1 = f(xi) and d(xi, yi) < ε for all i.

The chain-reachable set is
ChainReach(f,X0) :={x | ∀ε > 0, ∃ ε-chain x0, . . . , xn

with x0 ∈ X0 and xn = x}

Theorem If ChainReach(f, C) is compact, then
(i) ChainReach(f, C) is (δco, κ>;κ>)-computable, and
(ii) ChainReach(f, C) = lim supf ′→f, C′→C Reach(f ′, C ′).
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Solutions of differential equations

Denote by Φf
t (x) the solution of the differential equation

ẋ = f(x) at time t.
Theorem If f is Lipschitz, then the map (f, t) 7→ Φf

t is
(δco, ρ; δco)-computable.
Use Taylor methods to perform the compuation.
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Solutions of differential inclusions

If F is Lipschitz and lower-semicontinuous with closed
valued, then (F,A, t) 7→ ΦF

t (A) is
(µA<, ψ<, ρ;ψ<)-computable.
If F is upper-semicontinuous with compact values, and
solutions of ẋ ∈ F (x) remain bounded, then
(F,C, t) 7→ ΦF

t (C) is (µK>, κ>, ρ;κ>)-computable.
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Computation of fixed point sets

Theorem
(i) f 7→ Fix(f) is (δco, ψ>)-computable.
(ii) f 7→ Fix(f) is not (δco, ψ<)-computable.
Arbitrarily perturbations can destroy fixed-points.

Intervals of fixed-points are especially problematic...
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The fixed-point index

The Lefschetz fixed-point index is a computable partial
function

Ind :⊂ O(X)× C(X → X)→ Z

defined on pairs (U, f) such that Fix(f) ∩ ∂U = ∅.
Theorem If Ind(U, f) 6= 0, then Fix(f) ∩ U 6= ∅.
Theorem (Jiang) If X is a manifold, U is connected, and
Ind(f, U) = 0, there then all fixed points of f in U can be
removed by a homotopy supported in U , unless U is a
surface of negative Euler characteristic.

The fixed-point index can be used to compute a ψfx-name
of robust fixed-points of f .
The representation ψfx is incompatible with both ψ< and ψ>.
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Fixed points of multivalued maps

The fixed-point index is also defined for
upper-semicontinuous multivalued maps with acyclic
values.
Index theory is a way of getting lower bounds on sets from
outer approximations of upper-semicontinuous
acyclic-valued maps.
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Computability of forward invariant sets

The forward invariance kernel of f is defined
Inv(f,B) = {x | ∃ forward orbit of f in B through x}.

Theorem (f, C) 7→ Inv(f, C) is (δco, κ>;κ>)-computable,
but not (δco, κ;ψ<)-computable.
The robust forward invariance kernel of U is
RobustInv(F,U) :=

⋃{C ∈ K | C ⊂ U and F (C) ⊂ int(C)}.
Theorem RobustInv(F,U) is (δco, θ<; θ<)-computable, and
RobustInv(f, U) = lim inf Inv(f, U).
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Open problems

Computability of system properties – DyToComp —Bedlewo – 10 January 2006 – p.50/56



Computability of invariant sets

The Conley index can compute invariant sets of
upper-semicontinuous multivalued maps with acyclic
values.
Question How does the Conley index compare with the
direct computation of robust forward invariant sets?
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Computability of topological entropy

The topological entropy of cellular automata is
uncomputable. [Hurd, Kari & Culik, 1992]

htop is lower-semicontinuous for C(Mn) for n = 1, and for
Diff1+ε(Mn) for n = 2. [Katok, 1980]

htop is not continuous on C1+ε(Mn) for n > 2. [Misiurewicz, 1971]

htop is upper-semicontinuous on C∞(M). [Yomdin, 1987]

Is htop semicomputable when it is semicontinuous?
What are the best semicomputable approximations to htop?
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Computability of measures

What is an appropriate representation of a probability
measure?
— theory of valuations [Edelat]

Is it (im)possible to compute invariant measures for a
dynamical system on a compact space?
Is it possible to compute the measure of the set of
stochastic parameters of an interval map?
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Conclusions

Computability of system properties – DyToComp —Bedlewo – 10 January 2006 – p.54/56



Conclusions

Computable analysis provides a framework for formal
study of computability in an approximative setting.
Defines semantics for fundamental operations to be
implemented by tool developers.
Computability of many important dynamical systems
concepts still unknown.
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That’s all, folks!
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