Computability of system properties

Pieter Collins Centrum voor Wiskunde en Informatica, Amsterdam Pieter.Collins@cwi.nl

DyToComp, 5-10 June 2006

Acknowledgement This work was partially supported by the Nederlandse Wetenschappelijk Organisatie (NWO) through VIDI project number 639.032.408.

Motivation

• What is it possible to compute about a dynamical system?

- What is it possible to compute about a dynamical system?
- What is it *impossible* to compute??

- What is it possible to compute about a dynamical system?
- What is it *impossible* to compute??
- What should we use as the semantics of a valid computation?

Various approaches

- Brouwer's intuitionalist logic. [W.P. van Stigt, Brouwer's Intuitionism (1990)]
- Markov's constructive logic and analysis.
- Bishop's constructive analysis. [Bishop & Bridges, Constructive analysis (1985)]

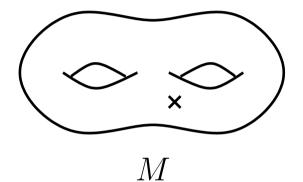
- Brouwer's intuitionalist logic. [W.P. van Stigt, Brouwer's Intuitionism (1990)]
- Markov's constructive logic and analysis.
- Bishop's constructive analysis. [Bishop & Bridges, Constructive analysis (1985)]
- Scott's domain theory.

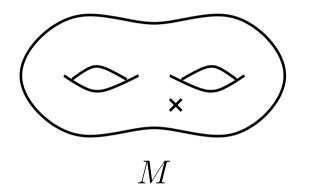
- Brouwer's intuitionalist logic. [W.P. van Stigt, Brouwer's Intuitionism (1990)]
- Markov's constructive logic and analysis.
- Bishop's constructive analysis. [Bishop & Bridges, Constructive analysis (1985)]
- Scott's domain theory.
- Blum, Cucker, Shub and Smale's real-RAM model.
 [Blum, Cucker, Shub, Smale, Complexity and real computation (1998)]

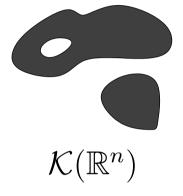
- Brouwer's intuitionalist logic. [W.P. van Stigt, Brouwer's Intuitionism (1990)]
- Markov's constructive logic and analysis.
- Bishop's constructive analysis. [Bishop & Bridges, Constructive analysis (1985)]
- Scott's domain theory.
- Blum, Cucker, Shub and Smale's real-RAM model. Unrealistic! [Blum, Cucker, Shub, Smale, Complexity and real computation (1998)]

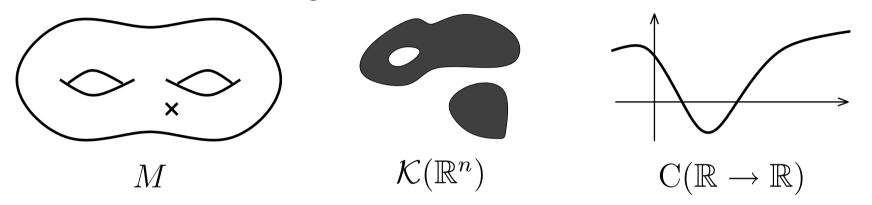
- Brouwer's intuitionalist logic. [W.P. van Stigt, Brouwer's Intuitionism (1990)]
- Markov's constructive logic and analysis.
- Bishop's constructive analysis. [Bishop & Bridges, Constructive analysis (1985)]
- Scott's domain theory.
- Blum, Cucker, Shub and Smale's real-RAM model. Unrealistic!
 [Blum, Cucker, Shub, Smale, Complexity and real computation (1998)]
- Ko's oracle machines. [Ko, Complexity theory of real functions (1991).]
- Weihrauch's computable analysis. [Klaus Weihrauch, Computable analysis An introduction (2000).]

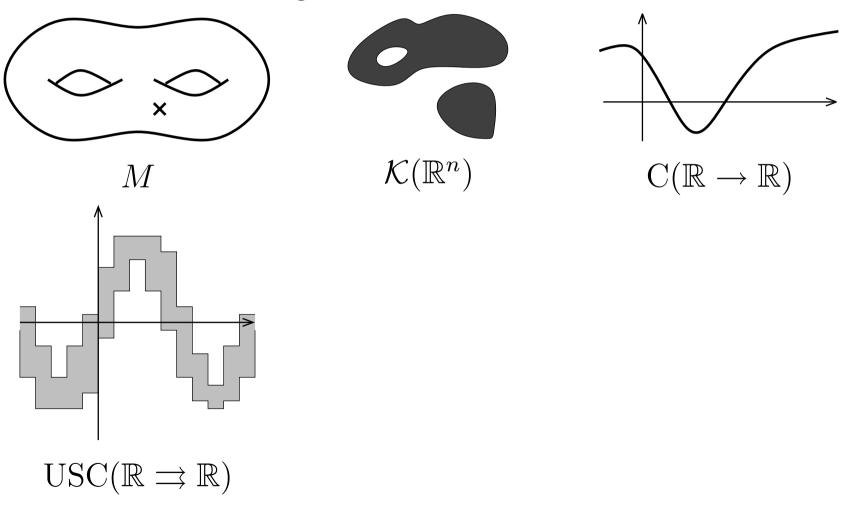
General topology (and philosophy)

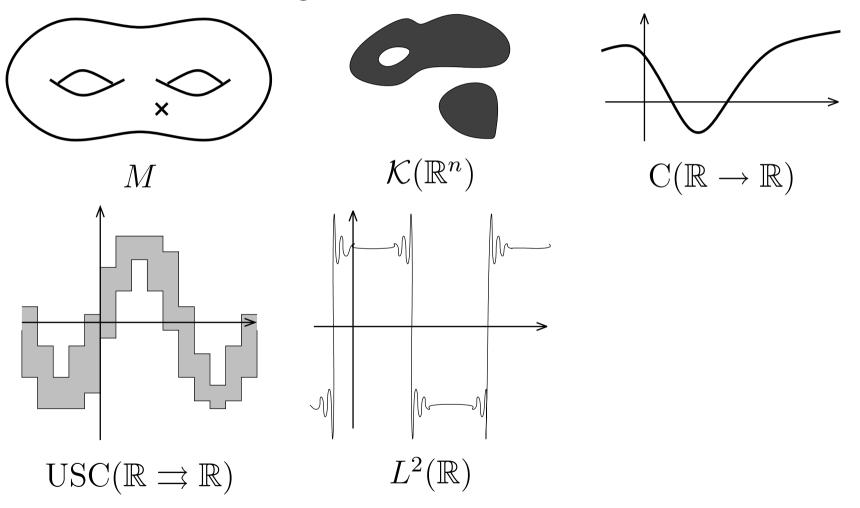


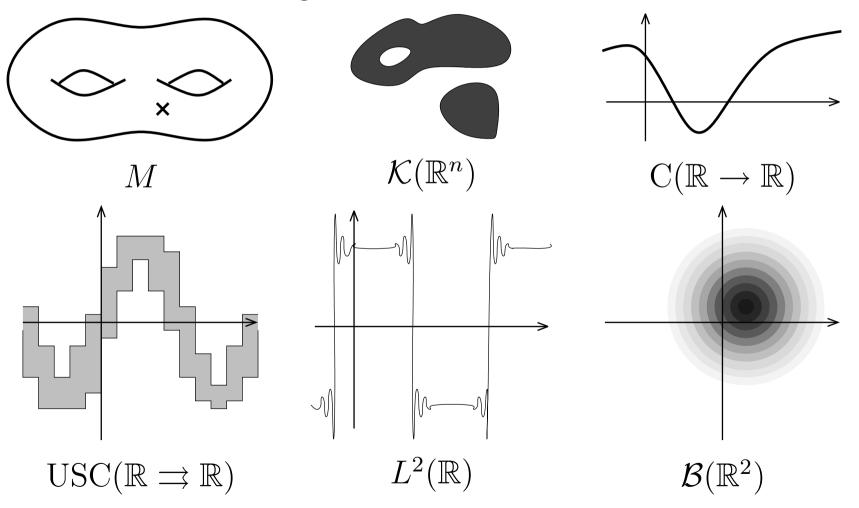












Answer

Answer

• They are all second-countable Kolmogorov (T_0) spaces!!!

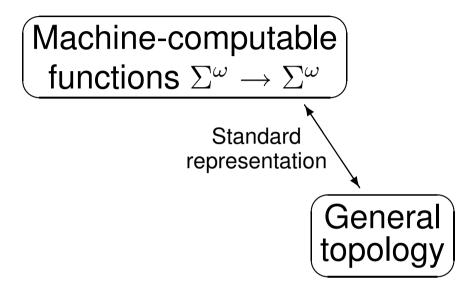
Answer

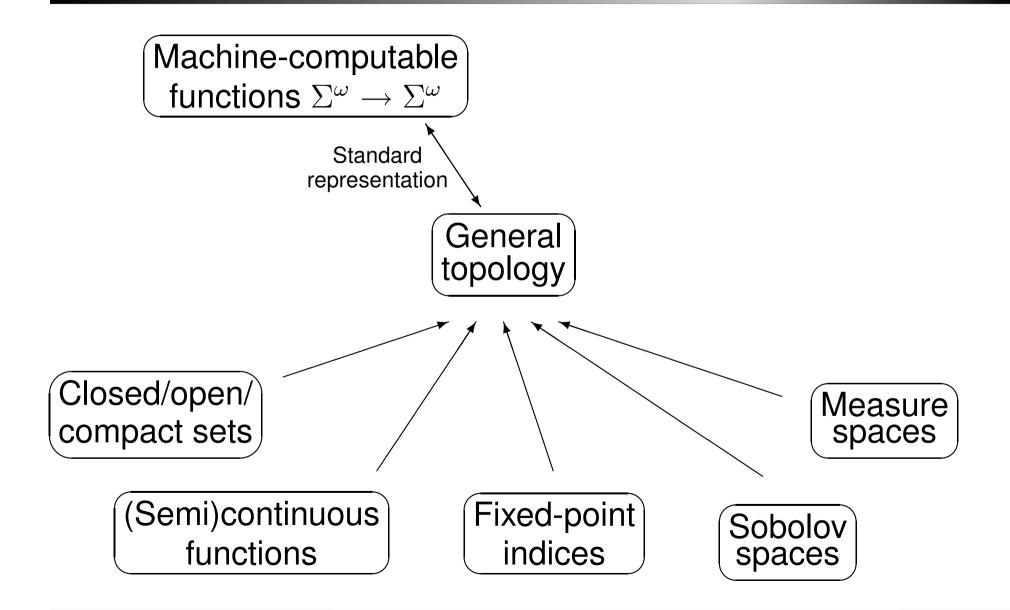
- They are all second-countable Kolmogorov (T_0) spaces!!!
- Why is this important??

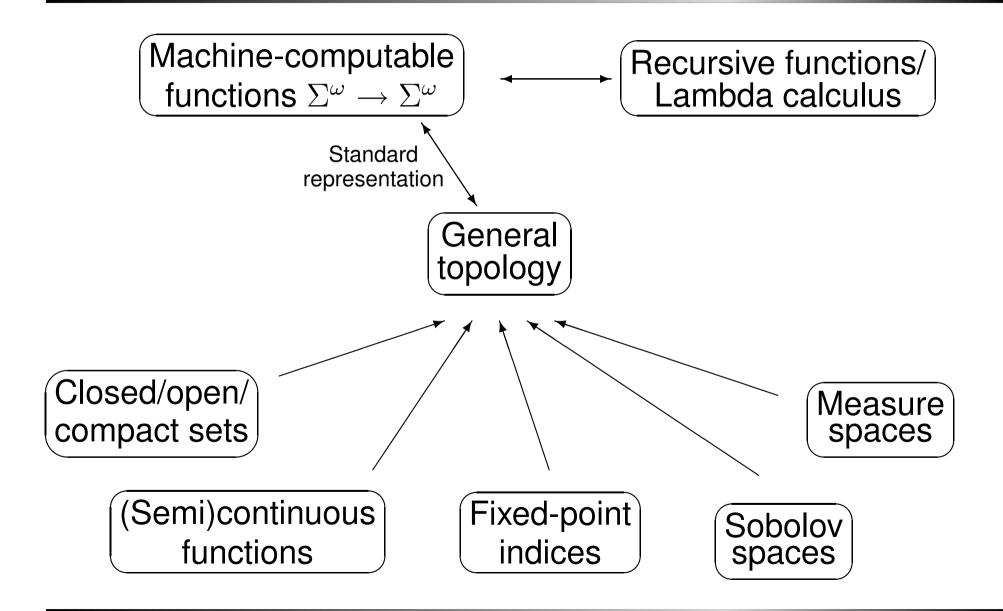
- They are all second-countable Kolmogorov (T_0) spaces!!!
- Why is this important??
 - An elements x of a Kolmogorov space is *uniquely* specified by giving all basic open sets containing x.

- They are all second-countable Kolmogorov (T_0) spaces!!!
- Why is this important??
 - An elements x of a Kolmogorov space is *uniquely* specified by giving all basic open sets containing x.
 - As there are countably many basic open sets, we can *list* all basic open sets containing *x*.

- They are all second-countable Kolmogorov (T_0) spaces!!!
- Why is this important??
 - An elements x of a Kolmogorov space is *uniquely* specified by giving all basic open sets containing x.
 - As there are countably many basic open sets, we can *list* all basic open sets containing *x*.
 - By naming the basic open sets as words in Σ*, points of X can be named by sequences in Σ^ω.



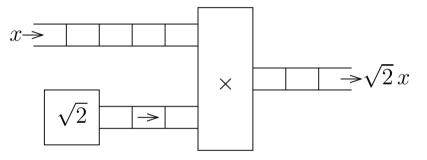




Computable analysis

[Klaus Weihrauch, Computable analysis - An introduction (2000).]

- Turing machine with *input*, *output* and *work* tapes; tape alphabet Σ .
- Computation is performed on sequences (elements of Σ^{ω}).

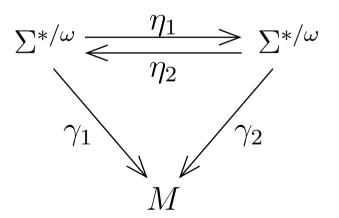


• A type-two machine computes a partial function

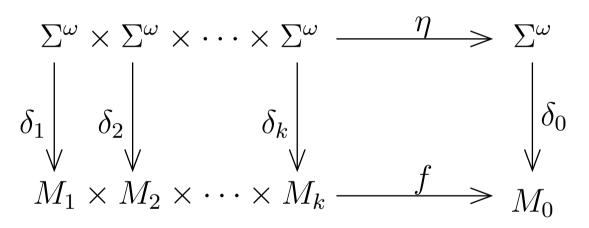
$$\eta:\subset \Sigma^{\omega}\times\cdots\times\Sigma^{\omega}\to\Sigma^{\omega}.$$

• Theorem If $\eta :\subset \Sigma^{\omega} \times \cdots \times \Sigma^{\omega} \to \Sigma^{\omega}$ is a type-two computable function, then η is continuous.

- A *notation* of a countable set M is a partial surjective function $\nu :\subset \Sigma^* \to M$.
- A *representation* of a set M is a partial surjective function $\delta :\subset \Sigma^{\omega} \to M$.
- Naming systems γ_1 and γ_2 are *equivalent* if each can be computably converted to the other.



- Let $\delta_i : \Sigma^{\omega} \to M_i$ be representations.
- A function $f: M_1 \times \cdots \times M_k \to M_0$ is $(\delta_1, \ldots, \delta_n; \delta_0)$ computable if there is a Turing-computable function η with



- A *computable topological space* is a tuple (X, τ, σ, ν) , where
 - (X, τ) is a Kolmogorov space,
 - σ is a countable sub-base of $\tau,$ and
 - $-\nu$ is a notation for σ .
- The *standard representation* of a computable topological space is the function $\delta :\subset \Sigma^{\omega} \to X$ defined by

 $\delta \langle w_1 w_2 \dots \rangle = x : \iff \{ \nu(w_1), \nu(w_2), \dots \} = \{ J \in \sigma \mid x \in J \}.$

• The standard representation encodes a list of *all* elements of σ which contain x.

Fundamental theorem of computable analysis

• **Theorem** If δ_i is the standard representation of $(X_i, \tau_i, \sigma_i, \nu_i)$ for i = 0, ..., k, then any $(\delta_1, ..., \delta_k; \delta_0)$ -computable function $f : X_1 \times \cdots \times X_k \to X_0$ is $(\tau_1, ..., \tau_k; \tau_0)$ -continuous

Representations of real numbers

• The topology τ of \mathbb{R} is generated by rational open intervals

$$\sigma = \{ (a, b) \in \mathbb{Q}^2 \mid a < b \}.$$

- The standard representation ρ of \mathbb{R} encodes a list of all rational open intervals (a, b) containing $x \in \mathbb{R}$.
- Under the standard representation, addition, subtraction, multiplication and division are computable.

Interval representation of real numbers

- Alternatively, represent a real number by a nested sequence of closed bounded rational intervals $\overline{I}_n = [a_n, b_n]$ with $\overline{I}_{n+1} \subset \overline{I}_n$ and $\bigcap_{n=0}^{\infty} \overline{I}_n = \{x\}$. $\overbrace{I_n = [a_n, b_n]} = \{x\}$.
- The interval representation is equivalent to the standard representation.
- Note that it is not possible to decide if two numbers are equal!!

Arithmetical operations are *not* computable for the representation by decimals!!

- Arithmetical operations are *not* computable for the representation by decimals!!
- Consider the computation of x = 4/3 + 2/3 in decimal representation.

- Arithmetical operations are *not* computable for the representation by decimals!!
- Consider the computation of x = 4/3 + 2/3 in decimal representation.
- Given finitely many digits, we have

 $x = 1 \cdot 3333... + 0 \cdot 6666... = ? \cdot ? ? ? ? ...$

- Arithmetical operations are *not* computable for the representation by decimals!!
- Consider the computation of x = 4/3 + 2/3 in decimal representation.
- Given finitely many digits, we have

 $x = 1 \cdot 3333... + 0 \cdot 6666... = ? \cdot ? ? ? ? ...$

• All we can deduce is that $1.9999 \le 1 \cdot 3333 + 0 \cdot 6666 \le x \le 1 \cdot 3334 + 0 \cdot 6667 = 2.0001$

- Arithmetical operations are *not* computable for the representation by decimals!!
- Consider the computation of x = 4/3 + 2/3 in decimal representation.
- Given finitely many digits, we have

 $x = 1 \cdot 3333... + 0 \cdot 6666... = ? \cdot ? ? ? ? ...$

- All we can deduce is that $1.9999 \le 1 \cdot 3333 + 0 \cdot 6666 \le x \le 1 \cdot 3334 + 0 \cdot 6667 = 2.0001$
- Therefore it is *impossible* to output even the *first digit* of the answer!!

Signed-digit representation of real numbers

 The signed-digit representation of real numbers is given by

$$x = \sum_{i=-\infty}^{n} x_i 2^i$$
, where $x_i \in \{-1, 0, 1\}$.

Signed-digit representation of real numbers

 The signed-digit representation of real numbers is given by

$$x = \sum_{i=-\infty}^{n} x_i 2^i$$
, where $x_i \in \{-1, 0, 1\}$.

The signed-digit representation is equivalent to the standard representation.

Representations of points and sets

- A *computable state space* is computable topological space (X, τ, β, ν) , where
 - (X, τ) is a locally-compact second-countable Hausdorff space, and
 - β is a base for τ consisting of pre-compact open sets.
- A set $I \in \beta$ is called a *basic open set*, and \overline{I} is a *basic compact set*.
- A *denotable (compact) set* is a finite union of basic compact sets, $C = \bigcup_{i=1}^{n} \overline{I}_{i}$.
- Assume that the basic sets are "nice" to work with.

- The standard representation ρ of (X, τ, β, ν) encodes a list of *all* elements of β containing x
- The standard representation is equivalant to the representation by sequences $(I_0, I_1, \ldots) \in \beta^{\omega}$ such that

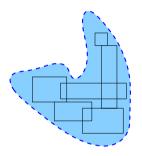
(i)
$$\overline{I}_{k+1} \subset \overline{I}_k$$
 for all k , and

(ii)
$$\bigcap_{k=0}^{\infty} \overline{I}_k = \{x\}.$$

• Equivalently, we can take $\overline{I}_{k+1} \subset I_k$ in (i).

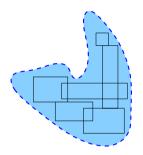
 $\{I \in \beta \mid \overline{I} \subset U\}.$

 $\{I \in \beta \mid \overline{I} \subset U\}.$



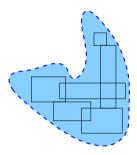
• Representation $\theta_{<}$ of \mathcal{O} .

 $\{I \in \beta \mid \overline{I} \subset U\}.$



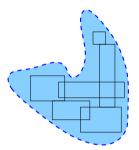
- Representation $\theta_{<}$ of \mathcal{O} .
- A $\theta_{<}$ name is equivalent to an increasing sequence of denotable sets (inner approximation).

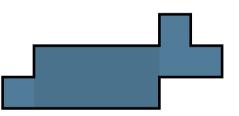
 $\{I \in \beta \mid \overline{I} \subset U\}.$



- Representation $\theta_{<}$ of \mathcal{O} . Inner approximation.
- A $\theta_{<}$ name is equivalent to an increasing sequence of denotable sets (inner approximation).

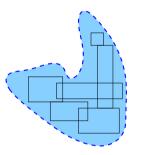
```
\{I \in \beta \mid \overline{I} \subset U\}.
```

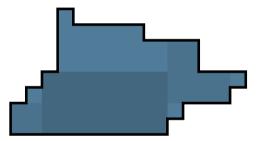




- Representation $\theta_{<}$ of \mathcal{O} . Inner approximation.
- A $\theta_{<}$ name is equivalent to an increasing sequence of denotable sets (inner approximation).

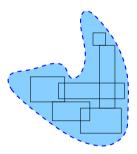
 $\{I \in \beta \mid \overline{I} \subset U\}.$

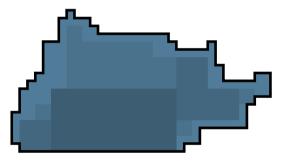




- Representation $\theta_{<}$ of \mathcal{O} . Inner approximation.
- A $\theta_{<}$ name is equivalent to an increasing sequence of denotable sets (inner approximation).

 $\{I \in \beta \mid \overline{I} \subset U\}.$





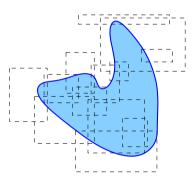
- Representation $\theta_{<}$ of \mathcal{O} . Inner approximation.
- A $\theta_{<}$ name is equivalent to an increasing sequence of denotable sets (inner approximation).

 A ψ_<-name of A ∈ A(X) encodes a list of all basic open sets intersecting A:

 $\{J \in \beta \mid A \cap J \neq \emptyset\}.$

 A ψ_<-name of A ∈ A(X) encodes a list of all basic open sets intersecting A:

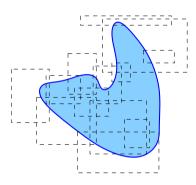
$$\{J \in \beta \mid A \cap J \neq \emptyset\}.$$



• Representation $\psi_{<}$ of \mathcal{A} .

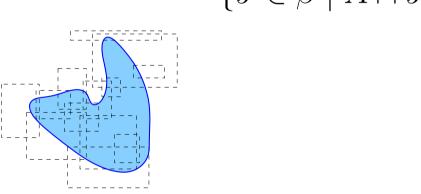
 A ψ_<-name of A ∈ A(X) encodes a list of all basic open sets intersecting A:

$$\{J \in \beta \mid A \cap J \neq \emptyset\}.$$



- Representation $\psi_{<}$ of \mathcal{A} .
- A $\psi_{<}$ name is equivalent to an "almost increasing" sequence of denotable sets (lower approximation).

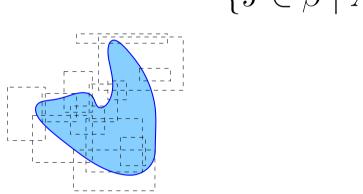
 A ψ_<-name of A ∈ A(X) encodes a list of all basic open sets intersecting A:



$\{J \in \beta \mid A \cap J \neq \emptyset\}.$

- Representation $\psi_{<}$ of \mathcal{A} . Lower approximation.
- A $\psi_{<}$ name is equivalent to an "almost increasing" sequence of denotable sets (lower approximation).

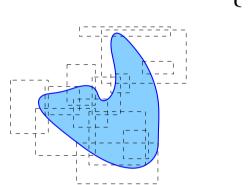
 A ψ_<-name of A ∈ A(X) encodes a list of all basic open sets intersecting A:

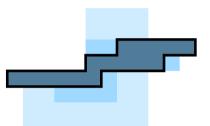


$\{J \in \beta \mid A \cap J \neq \emptyset\}.$

- Representation $\psi_{<}$ of \mathcal{A} . Lower approximation.
- A $\psi_{<}$ name is equivalent to an "almost increasing" sequence of denotable sets (lower approximation).

 A ψ_<-name of A ∈ A(X) encodes a list of all basic open sets intersecting A:





- Representation $\psi_{<}$ of \mathcal{A} . Lower approximation.
- A $\psi_{<}$ name is equivalent to an "almost increasing" sequence of denotable sets (lower approximation).

 A ψ_<-name of A ∈ A(X) encodes a list of all basic open sets intersecting A:

 $\{J \in \beta \mid A \cap J \neq \emptyset\}.$

- Representation $\psi_{<}$ of \mathcal{A} . Lower approximation.
- A $\psi_{<}$ name is equivalent to an "almost increasing" sequence of denotable sets (lower approximation).

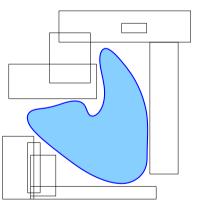
• A $\psi_>$ -name of A encodes a list of all basic compact sets disjoint from A:

$$\{I \in \beta \mid A \cap \overline{I} = \emptyset\}.$$

• A $\psi_>$ -name of A encodes a list of all basic compact sets disjoint from A:

$$\{I\in\beta\mid A\cap\overline{I}=\emptyset\}.$$

• Representation $\psi_>$ of \mathcal{A} .



• A $\kappa_>$ -name of $C \in \mathcal{K}(X)$ is encodes a list of all basic open covers of C:

 $\{(J_1,\ldots,J_k)\in\beta^*\mid C\subset J_1\cup\cdots\cup J_k\}.$

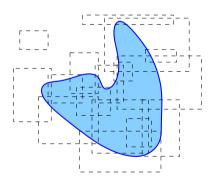
• A $\kappa_>$ -name of $C \in \mathcal{K}(X)$ is encodes a list of all basic open covers of C:

 $\{(J_1,\ldots,J_k)\in\beta^*\mid C\subset J_1\cup\cdots\cup J_k\}.$

• A $\kappa_>$ -name of $C \in \mathcal{K}(X)$ is encodes a list of all basic open covers of C:

 $\{(J_1,\ldots,J_k)\in\beta^*\mid C\subset J_1\cup\cdots\cup J_k\}.$

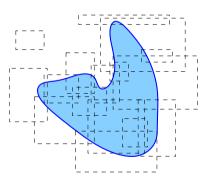
• A $\kappa_>$ -name is equivalent to a $\psi_>$ -name and a bounding box.



• Representation $\kappa_>$ of \mathcal{K} .

• A $\kappa_>$ -name of $C \in \mathcal{K}(X)$ is encodes a list of all basic open covers of C:

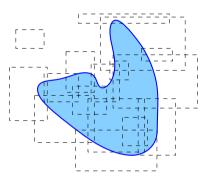
 $\{(J_1,\ldots,J_k)\in\beta^*\mid C\subset J_1\cup\cdots\cup J_k\}.$



- Representation $\kappa_>$ of \mathcal{K} .
- A κ_> name is equivalent to a decreasing sequence of denotable sets (outer approximation).

• A $\kappa_>$ -name of $C \in \mathcal{K}(X)$ is encodes a list of all basic open covers of C:

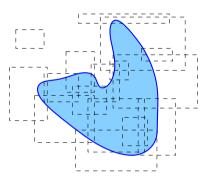
 $\{(J_1,\ldots,J_k)\in\beta^*\mid C\subset J_1\cup\cdots\cup J_k\}.$

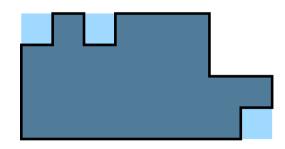


- Representation $\kappa_{>}$ of \mathcal{K} . Outer approximation.
- A κ_> name is equivalent to a decreasing sequence of denotable sets (outer approximation).

• A $\kappa_>$ -name of $C \in \mathcal{K}(X)$ is encodes a list of all basic open covers of C:

 $\{(J_1,\ldots,J_k)\in\beta^*\mid C\subset J_1\cup\cdots\cup J_k\}.$

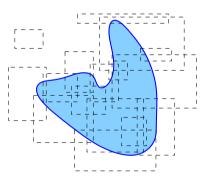




- Representation $\kappa_{>}$ of \mathcal{K} . Outer approximation.
- A κ_> name is equivalent to a decreasing sequence of denotable sets (outer approximation).

• A $\kappa_>$ -name of $C \in \mathcal{K}(X)$ is encodes a list of all basic open covers of C:

 $\{(J_1,\ldots,J_k)\in\beta^*\mid C\subset J_1\cup\cdots\cup J_k\}.$

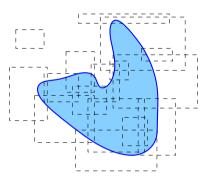




- Representation $\kappa_{>}$ of \mathcal{K} . Outer approximation.
- A κ_> name is equivalent to a decreasing sequence of denotable sets (outer approximation).

• A $\kappa_>$ -name of $C \in \mathcal{K}(X)$ is encodes a list of all basic open covers of C:

 $\{(J_1,\ldots,J_k)\in\beta^*\mid C\subset J_1\cup\cdots\cup J_k\}.$

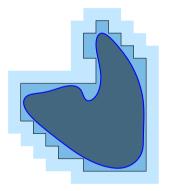


- Representation $\kappa_{>}$ of \mathcal{K} . Outer approximation.
- A κ_> name is equivalent to a decreasing sequence of denotable sets (outer approximation).

• A κ -name of *C* is a combination of a lower $\psi_{<}$ -name and an upper $\kappa_{>}$ -name.

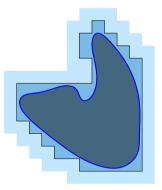
- A κ -name of *C* is a combination of a lower $\psi_{<}$ -name and an upper $\kappa_{>}$ -name.
- κ is the standard representation of the *Vietoris topology* on $\mathcal{K}(X)$.

- A κ -name of *C* is a combination of a lower $\psi_{<}$ -name and an upper $\kappa_{>}$ -name.
- κ is the standard representation of the *Vietoris topology* on $\mathcal{K}(X)$.



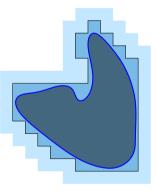
• Representation κ of \mathcal{K} .

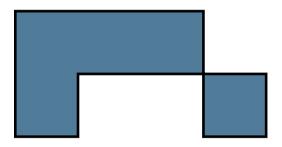
- A κ -name of *C* is a combination of a lower $\psi_{<}$ -name and an upper $\kappa_{>}$ -name.
- κ is the standard representation of the *Vietoris topology* on $\mathcal{K}(X)$.



- Representation κ of \mathcal{K} .
- κ is equivalent to arbitrarily accurate approximation in the Hausdorff metric d_H .

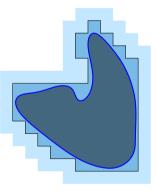
- A κ -name of *C* is a combination of a lower $\psi_{<}$ -name and an upper $\kappa_{>}$ -name.
- κ is the standard representation of the *Vietoris topology* on $\mathcal{K}(X)$.

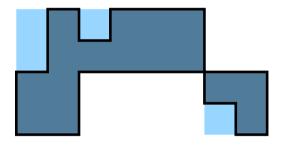




- Representation κ of \mathcal{K} . Approximation in d_H .
- κ is equivalent to arbitrarily accurate approximation in the Hausdorff metric d_H .

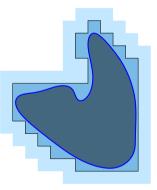
- A κ -name of *C* is a combination of a lower $\psi_{<}$ -name and an upper $\kappa_{>}$ -name.
- κ is the standard representation of the *Vietoris topology* on $\mathcal{K}(X)$.

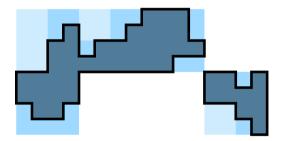




- Representation κ of \mathcal{K} . Approximation in d_H .
- κ is equivalent to arbitrarily accurate approximation in the Hausdorff metric d_H .

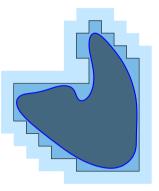
- A κ -name of *C* is a combination of a lower $\psi_{<}$ -name and an upper $\kappa_{>}$ -name.
- κ is the standard representation of the *Vietoris topology* on $\mathcal{K}(X)$.

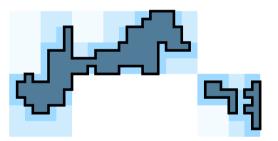




- Representation κ of \mathcal{K} . Approximation in d_H .
- κ is equivalent to arbitrarily accurate approximation in the Hausdorff metric d_H .

- A κ -name of *C* is a combination of a lower $\psi_{<}$ -name and an upper $\kappa_{>}$ -name.
- κ is the standard representation of the *Vietoris topology* on $\mathcal{K}(X)$.





- Representation κ of \mathcal{K} . Approximation in d_H .
- κ is equivalent to arbitrarily accurate approximation in the Hausdorff metric d_H .

- Union $A, B \mapsto A \cup B$ is $(\psi_{<}, \psi_{<}; \psi_{<})$ -computable and $(\psi_{>}, \psi_{>}; \psi_{>})$ -computable.
- Intersection $A, B \mapsto A \cap B$ is $(\psi_>, \psi_>; \psi_>)$ -computable; $(A, C) \mapsto A \cap C$ is $(\psi_>, \kappa_>; \kappa_>)$ -computable.
- Intersection $A, B \mapsto A \cap B$ is *not* $(\psi_{<}, \psi_{<}; \psi_{<})$ -computable.
- Closed intersection $(A, U) \mapsto cl(A \cap U)$ is $(\psi_{<}, \theta_{<}; \psi_{<})$ -computable.

Representations of maps

Representation of continuous functions

- The *compact-open topology* τ^{co} on $C(X \to Y)$ is the topology of uniform convergence on compact sets.
- A δ^{co} -name of f encodes a list of pairs (\overline{I}, J) such that the image of \overline{I} is a subset of J:

$$\{(I,J)\in\beta_X\times\beta_Y\mid f(\overline{I})\subset J\}.$$

- The *evaluation representation* δ[→] of C(X → Y) encodes a function f by a function F: β_X → β_Y such that
 (i) f(I) ⊂ F(I)
 (ii) I₁ ⊂ I₂ ⇒ F(I₁) ⊂ F(I₂), and
 (iii) If I_{i+1} ⊂ I_i and ⋂_{i=0}[∞] I_i = {x}, then ⋂_{i=0}[∞] F(I_i) = {f(x)}
- May alternatively require $f(\overline{I}) \subset int(\mathcal{F}(\overline{I}))$ in (i).
- The evaluation representation is equivalent to the compact-open representation.

Computable operators on continuous functions

- Evaluation $(f, x) \mapsto f(x)$ is $(\delta^{co}, \rho; \rho)$ -computable.
- Image $(f, A) \mapsto \operatorname{cl}(f(A))$ is $(\delta^{\operatorname{co}}, \psi_{<}; \psi_{<})$ -computable; $(f, C) \mapsto f(C)$ is $(\delta^{\operatorname{co}}, \kappa_{>}; \kappa_{>})$ -computable.
- Preimage $(f, U) \mapsto f^{-1}(U)$ is $(\delta^{co}, \theta_{<}; \theta_{<})$ -computable; $(f, A) \mapsto f^{-1}(A)$ is $(\delta^{co}, \psi_{>}; \psi_{>})$ -computable.
- $(f, A) \mapsto \operatorname{cl}(f(A))$ is *not* $(\delta^{\operatorname{co}}, \psi_{>}, \psi_{>})$ -computable.
- $(f, A) \mapsto f^{-1}(A)$ is *not* $(\delta^{co}, \psi_{<}, \psi_{<})$ -computable.

- The $\gamma^{(r)}$ -representation of $C^{(r)}(X \to Y)$ consists of a δ^{co} -representation of f and each of its first r derivative.
- Operations such as set-image are more efficient using the $\gamma^{(1)}$ -representation than the $\gamma^{(0)} = \delta^{co}$ representation.

- The lower representation $\mu_{\leq}^{\mathcal{A}}$ of closed-valued lowersemicontinuous functions $\mathrm{LSC}^{\mathcal{A}}(X \rightrightarrows Y)$ encodes all pairs (\overline{I}, J) such that $\overline{I} \subset F^{-1}(J)$.
- The upper representation $\mu_{>}^{\mathcal{K}}$ of compact-valued uppersemicontinuous functions $\mathrm{USC}^{\mathcal{K}}(X \rightrightarrows Y)$ encodes all tuples $(\overline{I}, J_1, \ldots, J_k)$ such that $F(\overline{I}) \subset \bigcup_{i=1}^k J_i$.
- $\mu_{<}^{\mathcal{A}}$ and $\mu_{>}^{\mathcal{K}}$ are each equivalent to δ^{co} if *F* is a single-valued continuous function.

Implementation of computable analysis

- Set-based analysis
 - GAIO [Dellnitz, Junge]
- Taylor integration schemes
 - AWA[Lohner]
 - CAPD [Mrozek, Wilczak, Żelawski, Zgliczyński]
 - Cosy [Berz, Makino]
- Reachability analysis
 - d/dt [Asarin, Dang, Maler]
 - Hy(per)Tech [Henzinger et al.]
 - Ellipsoidal calculus [Kurzhanski]
- — Ariadne [Balluchi, Casagrande, C., Murrieri, Villa]

- double Machine double-precision floating-point.
 Fixed precision, inexact arithmetic, FAST!!
- MPFloat Multiple-precision floating-point.
 Arbitrary precision, inexact arithmetic.
- Dyadic Arbitrary precision, exact addition, subtraction, multiplication and division by 2.
- Rational Arbitrary precision, exact arithmetic.

[Gnu Multiple-Precision Library (GMP), MPFR]

Interval<real_type> Interval arithmetic.

Ariadne–Basic set types

- Basic set types include
 - Simplex
 - Cuboid
 - Parallelotope
 - Zonotope
 - Polytope
 - Ellipsoid

Ariadne–Operations on basic sets

- Operations on basic sets
 - contains
 - disjoint
 - interiors_intersect
 - subset
 - bounding_box
 - regular_intersection
 - minkowski_sum

- *Denotable sets* are finite unions of basic sets.
 - ListSet<basic_set_type>
 - GridMaskSet, GridCellListSet
 - PartitionTreeSet
 - SimplicialComplex

- Maps are specified using the evaluation representation on cuboids.
 - map.apply(cuboid)
- Evaluation on other sets for performed using C^1 methods.
 - o clmap.derivative(cuboid)
 - c1map.apply(parallelotope)
- Also implement vector fields and control systems.

Computability in dynamical systems

• The reachable set from X_0 under f is $\operatorname{Reach}(f, X_0) := \{x \mid \exists x_0, x_1, \dots, x_n \text{ s.t.}$ $x_0 \in X_0, \ f(x_i) = x_{i+1} \text{ and } x_n = x\}.$ $= \bigcup_{n=0}^{\infty} f^n(X_0)$ • The reachable set from X_0 under f is $\operatorname{Reach}(f, X_0) := \{x \mid \exists x_0, x_1, \dots, x_n \text{ s.t.}$ $x_0 \in X_0, \ f(x_i) = x_{i+1} \text{ and } x_n = x\}.$ $= \bigcup_{n=0}^{\infty} f^n(X_0)$

Theorem

(i) The operator $(f, A) \mapsto \text{clReach}(f, A)$ is $(\delta^{\text{co}}, \psi_{<}; \psi_{<})$ -computable.

• The reachable set from X_0 under f is $\operatorname{Reach}(f, X_0) := \{x \mid \exists x_0, x_1, \dots, x_n \text{ s.t.}$ $x_0 \in X_0, \ f(x_i) = x_{i+1} \text{ and } x_n = x\}.$ $= \bigcup_{n=0}^{\infty} f^n(X_0)$

Theorem

- (i) The operator $(f, A) \mapsto \text{clReach}(f, A)$ is $(\delta^{\text{co}}, \psi_{<}; \psi_{<})$ -computable.
- (ii) clReach is not upper-semicontinuous, so is not $(\delta^{co}, \kappa_{>}; \psi_{>})$ -computable.

• The reachable set from
$$X_0$$
 under f is
 $\operatorname{Reach}(f, X_0) := \{x \mid \exists x_0, x_1, \dots, x_n \text{ s.t.}$
 $x_0 \in X_0, \ f(x_i) = x_{i+1} \text{ and } x_n = x\}.$
 $= \bigcup_{n=0}^{\infty} f^n(X_0)$

Theorem

- (i) The operator $(f, A) \mapsto \text{clReach}(f, A)$ is $(\delta^{\text{co}}, \psi_{<}; \psi_{<})$ -computable.
- (ii) clReach is not upper-semicontinuous, so is not $(\delta^{co}, \kappa_{>}; \psi_{>})$ -computable.
- Look for an upper-semicontinuous over-approximation to Reach.

• An ϵ -chain is a sequence (x_0, x_1, \dots, x_n) such that there exist y_i with $y_{i+1} = f(x_i)$ and $d(x_i, y_i) < \epsilon$ for all i.

Computability of chain reachability

- An ϵ -chain is a sequence (x_0, x_1, \dots, x_n) such that there exist y_i with $y_{i+1} = f(x_i)$ and $d(x_i, y_i) < \epsilon$ for all i.
- The chain-reachable set is

ChainReach $(f, X_0) := \{x \mid \forall \epsilon > 0, \exists \epsilon \text{-chain } x_0, \dots, x_n\}$

with $x_0 \in X_0$ and $x_n = x$

Computability of chain reachability

- An ϵ -chain is a sequence (x_0, x_1, \dots, x_n) such that there exist y_i with $y_{i+1} = f(x_i)$ and $d(x_i, y_i) < \epsilon$ for all i.
- The chain-reachable set is

ChainReach $(f, X_0) := \{x \mid \forall \epsilon > 0, \exists \epsilon$ -chain x_0, \dots, x_n with $x_0 \in X_0$ and $x_n = x\}$

Theorem If ChainReach(f, C) is compact, then
 (i) ChainReach(f, C) is (δ^{co}, κ_>; κ_>)-computable,

- An ϵ -chain is a sequence (x_0, x_1, \dots, x_n) such that there exist y_i with $y_{i+1} = f(x_i)$ and $d(x_i, y_i) < \epsilon$ for all i.
- The chain-reachable set is

ChainReach $(f, X_0) := \{x \mid \forall \epsilon > 0, \exists \epsilon$ -chain x_0, \dots, x_n with $x_0 \in X_0$ and $x_n = x\}$

- **Theorem If** ChainReach(f, C) is compact, then
 - (i) ChainReach(f, C) is $(\delta^{co}, \kappa_{>}; \kappa_{>})$ -computable, and
 - (ii) ChainReach $(f, C) = \limsup_{f' \to f, C' \to C} \operatorname{Reach}(f', C')$.

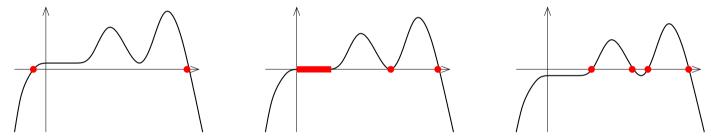
Solutions of differential equations

- Denote by $\Phi_t^f(x)$ the solution of the differential equation $\dot{x} = f(x)$ at time *t*.
- **Theorem** If f is Lipschitz, then the map $(f, t) \mapsto \Phi_t^f$ is $(\delta^{co}, \rho; \delta^{co})$ -computable.
- Use Taylor methods to perform the compution.

- If *F* is Lipschitz and lower-semicontinuous with closed valued, then $(F, A, t) \mapsto \Phi_t^F(A)$ is $(\mu_{<}^{\mathcal{A}}, \psi_{<}, \rho; \psi_{<})$ -computable.
- If *F* is upper-semicontinuous with compact values, and solutions of $\dot{x} \in F(x)$ remain bounded, then $(F, C, t) \mapsto \Phi_t^F(C)$ is $(\mu_>^{\mathcal{K}}, \kappa_>, \rho; \kappa_>)$ -computable.

• Theorem

- (i) $f \mapsto \operatorname{Fix}(f)$ is $(\delta^{\operatorname{co}}, \psi_{>})$ -computable.
- (ii) $f \mapsto \operatorname{Fix}(f)$ is *not* $(\delta^{\operatorname{co}}, \psi_{<})$ -computable.
- Arbitrarily perturbations can destroy fixed-points.



Intervals of fixed-points are especially problematic...

• The Lefschetz fixed-point index is a computable partial function $\operatorname{Ind} :\subset \mathcal{O}(X) \times C(X \to X) \to \mathbb{Z}$

defined on pairs (U, f) such that $Fix(f) \cap \partial U = \emptyset$.

- Theorem If $Ind(U, f) \neq 0$, then $Fix(f) \cap U \neq \emptyset$.
- Theorem (Jiang) If X is a manifold, U is connected, and Ind(f, U) = 0, there then all fixed points of f in U can be removed by a homotopy supported in U, unless U is a surface of negative Euler characteristic.
- The fixed-point index can be used to compute a ψ_{fx} -name of robust fixed-points of f.
- The representation ψ_{fx} is *incompatible* with both $\psi_{<}$ and $\psi_{>}$.

- The fixed-point index is also defined for upper-semicontinuous *multivalued* maps with *acyclic* values.
- Index theory is a way of getting *lower* bounds on sets from outer approximations of *upper*-semicontinuous acyclic-valued maps.

• The *forward invariance kernel* of *f* is defined

 $Inv(f, B) = \{x \mid \exists \text{ forward orbit of } f \text{ in } B \text{ through } x\}.$

- Theorem $(f, C) \mapsto \operatorname{Inv}(f, C)$ is $(\delta^{\operatorname{co}}, \kappa_{>}; \kappa_{>})$ -computable, but not $(\delta^{\operatorname{co}}, \kappa; \psi_{<})$ -computable.
- The robust forward invariance kernel of U is $\operatorname{RobustInv}(F, U) := \bigcup \{ C \in \mathcal{K} \mid C \subset U \text{ and } F(C) \subset \operatorname{int}(C) \}.$
- Theorem RobustInv(F, U) is $(\delta^{co}, \theta_{\leq}; \theta_{\leq})$ -computable, and RobustInv $(f, U) = \liminf \operatorname{Inv}(f, U)$.

Open problems

- The Conley index can compute invariant sets of upper-semicontinuous multivalued maps with acyclic values.
- **Question** How does the Conley index compare with the direct computation of robust forward invariant sets?

Computability of topological entropy

- The topological entropy of cellular automata is uncomputable. [Hurd, Kari & Culik, 1992]
- h_{top} is lower-semicontinuous for $C(M^n)$ for n = 1, and for $Diff^{1+\epsilon}(M^n)$ for n = 2. [Katok, 1980]
- h_{top} is not continuous on $C^{1+\epsilon}(M^n)$ for $n \ge 2$. [Misiurewicz, 1971]
- h_{top} is upper-semicontinuous on $C^{\infty}(M)$. [Yomdin, 1987]
- Is h_{top} semicomputable when it is semicontinuous?
- What are the best semicomputable approximations to h_{top} ?

- What is an appropriate representation of a probability measure?
 - theory of valuations [Edelat]
- Is it (im)possible to compute invariant measures for a dynamical system on a compact space?
- Is it possible to compute the measure of the set of stochastic parameters of an interval map?

Conclusions

- Computable analysis provides a framework for formal study of computability in an approximative setting.
- Defines semantics for fundamental operations to be implemented by tool developers.
- Computability of many important dynamical systems concepts still unknown.

That's all, folks!