Rigorous numerics for infinite dimensional maps

Oliver Junge Munich University of Technology

joint work with Sarah Day and Konstantin Mischaikow

Line of reasoning

```
infinite dimensional map
                            ↓Galerkin + truncation estimate
          finite dimensional multivalued map
                            ↓spatial discretization (GAIO)
   combinatorial multivalued map (directed graph)
                            Jgraph algorithms
               combinatorial index pair
                            ↓computational homology (CHomP)
Conley index for finite dimensional continuous selector
                            ↓lifting
             Conley index for original map
```

The map

The Kot-Schaffer growth-dispersal model for plants:

$$\Phi: L^2 \to L^2, \quad \Phi(a)(y) = \frac{1}{2\pi} \int_{-\pi}^{\pi} b(x, y) \ \mu \ a(x) \left(1 - \frac{a(x)}{c(x)} \right) dx,$$
$$a, b, c \in L^2([-\pi, \pi]), \mu > 0, b(x, y) = b(x - y).$$

Equivalent countable system

Using a basis of Fourier-modes $\varphi_k = \exp(ik\cdot)$ for L^2 one gets the countable system of maps:

$$f_k(a) = \mu b_k \left[a_k - \sum_{j+l+n=k} c_j a_l a_n \right], \quad k \in \mathbb{Z},$$

 a_k, b_k, c_k Fourier coefficients of a, b, c^{-1} .

Line of reasoning

• Let $P_m: L^2 \to X_m = \operatorname{span}\{\varphi_0, \dots, \varphi_{m-1}\}$ be the projection onto the first m modes and consider the finite dimensional map

$$f^{(m)}: X_m \to X_m, \quad f^{(m)} = P_m \circ f;$$

- What is the relation between the dynamics of f and of $f^{(m)}$?
- Write

$$f(a) = f(P_m a) + (f(a) - f(P_m a))$$

and suppose that we can bound $f(a) - f(P_m a)$ on a compact subset

$$Z = W \times V, \quad W \subset X_m,$$

of L^2 :

$$|f(a) - f(P_m a)| < \varepsilon^{(m)}$$
 for all $a \in Z$.

ullet Now consider a *multivalued* map $F^{(m)}:W\rightrightarrows X_m$ with the property that for all $a\in Z$

$$P_m f(a) \in F^{(m)}(P_m a).$$

- ullet Compute objects of interest for $F^{(m)}$ via a rigorous set-oriented approach in combination with the Conley-index theory:
 - cover the maximal invariant set of $F^{(m)}$ in W;
 - compute approximate locations of objects of interest (periodic points, connecting orbits, chain recurrent sets);
 - construct an isolating neighborhood and an index pair of the desired invariant set;
 - compute its Conley index;
- Lift the information on $F^{(m)}$, resp. $f^{(m)}$, to the full system Φ .

Finite dimensional multivalued map

$$F_k^{(m)}(a_0,\ldots,a_{m-1}) = \mu b_k \left[a_k - \sum_{\substack{j+l+n=k\\0 \le j,l,n \le m-1}} c_j a_l a_n \right] + \varepsilon_k^{(m)} [-1,1],$$

 $k = 0, 1, \dots, m - 1.$

The error $\varepsilon_k^{(m)}$ has been computed in such a way that

$$\left| f_k(a) - f_k^{(m)}(a_0, \dots, a_{m-1}) \right| \in \varepsilon_k^{(m)}[-1, 1]$$

for all a in some compact set $Z = W \times V \subset L^2$.

Objects in Phase Space

- A full trajectory of F is given by $\sigma: \mathbb{Z} \to X$, $\sigma(n+1) \in F(\sigma(n))$;
- A set $S \subset W$ is *invariant*, if for every $x \in S$ there exists a full trajectory $\sigma : \mathbb{Z} \to S$ with $\sigma(0) = x$.
- \bullet The maximal invariant set of a subset S is given by

$$Inv(S, F) = \{x \in S \mid \exists \sigma : \mathbb{Z} \to S, \sigma(0) = x\}.$$

ullet An *isolating neighborhood* is a compact set $I\subset W$ such that

$$Inv(I,F) \subset int(I)$$
.

An invariant set is *isolated*, if it is the maximal invariant set of some isolating neighborhood.

Spatial Discretization

- \bullet Goal: *global* analysis of F (i.e. computation of invariant sets);
- partition (part of) W into a finite grid $\mathcal{B} = \{B_1, \dots, B_b\}$ of compact connected sets, $W = \bigcup_{i=1}^b B_i$
- ullet and define a multivalued map $\mathcal{F}:\mathcal{B}
 ightarrow \mathcal{B}$ by

$$\mathcal{F}(B) = \left\{ B' \in \mathcal{B} \mid F(B) \cap B' \neq \emptyset \right\};$$

ullet Implementation: ${\cal B}$ in a binary tree

 \mathcal{F} as a (sparse) matrix \equiv directed graph.

Objects for \mathcal{F}

- ullet The notions of trajectory, invariant set and maximal invariant set directly carry over to \mathcal{F} .
- ullet For $\mathcal{S}\subset\mathcal{B}$ let $|\mathcal{S}|$ denote the union of the elements in \mathcal{S} and let

$$o(S) = \{ B \in \mathcal{B} \mid B \cap |S| \neq \emptyset \}$$

be the smallest representable neighborhood of S.

ullet A (combinatorial) isolating neighborhood for ${\mathcal F}$ is a set ${\mathcal I}\subset {\mathcal B}$ such that

$$o(\operatorname{Inv}(\mathcal{I},\mathcal{F})) \subset \mathcal{I}.$$

Proposition 1 If \mathcal{I} is an isolating neighborhood for \mathcal{F} , then $|\mathcal{I}|$ is an isolating neighborhood for F.

Index pairs

Let \mathcal{I} be an isolating neighborhood for \mathcal{F} . A pair $\mathcal{N}=(\mathcal{N}_1,\mathcal{N}_0)$, $\mathcal{N}_0\subset\mathcal{N}_1\subset\mathcal{I}$ is an *index pair* if

Theorem 1 (Szymczak, 97) Let S be an isolated invariant set for F and let

$$\mathcal{N}_1 = \mathcal{S} \cup \mathcal{F}(\mathcal{S}), \quad \mathcal{N}_0 = \mathcal{N}_1 \backslash \mathcal{S}.$$

Then $\mathcal{N} = (\mathcal{N}_1, \mathcal{N}_0)$ is an index pair.

Computing Isolating Neighborhoods

Consider the transition matrix

$$P = (p_{ij}), \quad p_{ij} = \begin{cases} 1, & \text{if } B_i \in \mathcal{F}(B_j), \\ 0, & \text{else.} \end{cases}$$

k-periodic points of $\mathcal{F} \leftrightarrow$ nonzero diagonal entries of P^k ;

• Consider the graph $G = (\mathcal{B}, V)$,

$$V = \{(B, B') : B' \in \mathcal{F}(B)\}.$$

- recurrent sets of $\mathcal{F} \leftrightarrow$ strongly connected components of G;
- connecting orbits of $\mathcal{F} \leftrightarrow$ shortest paths (Dijkstra's algorithm);
- P and G are typically sparse and can be stored explicitely.

Turning the guess into a true isolating nbhd

Computing \mathcal{F}

ullet Heuristic approach: choose a finite set $T\subset B\in \mathcal{B}$ of test points in each box and set

$$\mathcal{F}(B) := \{ B' \in \mathcal{B} \mid f(T) \cap B' \neq \emptyset \}.$$

- Note that since \mathcal{B} is stored in a binary tree the complexity of this approximation of $\mathcal{F}(B)$ is only $O(\#T \cdot \log(\#\mathcal{B}))$.
- Rigorous approach:
 - Write

$$f(x+h) = f(x) + Df(x)h + f^{nl}(x,h).$$

– For the box $B=B(c,r)\in\mathcal{B}$ (c: center, r: radius) compute $\varepsilon^{nl}(c)$ such that

$$\max_{|h| \le r} \left| f^{nl}(c,h) \right| \le \varepsilon^{nl}(c)$$

- For $x \in B$ set

$$F^{(m)}(x) = B(f(c), |Df(c)|r + \varepsilon^{nl}(c) + \varepsilon^{(m)})$$

Finally define

$$\mathcal{F}(B(c,r)) = \{ B' \in \mathcal{B} \mid F(c) \cap B' \neq \emptyset \}.$$

– Note: the set $\mathcal{F}(B)$ can be determined by a single depth first search of the tree:

$$\mathcal{F} = \operatorname{cap}(B,C,k)$$
 if $B \cap C \neq \emptyset$ if $\operatorname{depth}(B) = k$
$$\mathcal{F} := \mathcal{F} \cup \{B\}$$
 else
$$\mathcal{F} := \mathcal{F} \cup \operatorname{cap}(B^+,C,k) \cup \operatorname{cap}(B^-,C,k)$$
 return \mathcal{F}

• control of round off via interval arithmetic (BIAS, Profil, b4m, GAIO);

Lifting to the full system

• The compact set $Z = W \times V \subset L^2$ is of the form

$$Z = \prod_{k=0}^{\infty} [a_k^-, a_k^+].$$

- So far we computed an isolating neighborhood $I^{(m)} \subset W$ for $f^{(m)}$.
- ullet Theorem 2 . If $I^{(m)}$ is an isolating neighborhood for $f^{(m)}$ and if

$$f_k(Z) \subset (a_k^-, a_k^+), \quad k \ge m,$$

then

$$I = I^{(m)} \times \prod_{k=m}^{\infty} [a_k^-, a_k^+]$$

is an isolating neighborhood for Φ . In particular, the Conley index for a corresponding index pair is the same as for $I^{(m)}$.

Tightening isolating neighborhoods

Algorithm 1 (Dellnitz, Hohmann, 97) Given the initial collection \mathcal{B}_0 , one inductively obtains \mathcal{B}_k from \mathcal{B}_{k-1} for k = 1, 2, ... in two steps.

- 1. Subdivision: Construct a new collection $\hat{\mathcal{B}}_k$ by bisecting each box in \mathcal{B}_{k-1} with respect to some coordinate direction.
- 2. Selection: Compute the relevant subset \mathcal{B}_k of $\widehat{\mathcal{B}}_k$, i.e. set

$$\mathcal{B}_k = \operatorname{Inv}(\widehat{\mathcal{B}}_k, \mathcal{F}).$$

Tightening the infinite tail

ullet For $k=m,\ldots$ compute an interval I_k , such that

$$f_k\left(\prod_{k=0}^{\infty} [a_k^-, a_k^+]\right) \subset I_k$$

and set

$$[a_k^-, a_k^+]_{new} := I_k.$$

• Consider a polynomial nonlinearity

$$c(x)a(x)^p$$

in Φ.

The corresponding terms in the countable system read

$$a_k \mapsto \sum_{n_0, \dots, n_{p-1} \in \mathbb{Z}} c_{n_0} a_{n_1} \dots a_{n_{p-1}} a_{k-(n_0 + \dots + n_{p-1})}.$$

• Regularity assumptions. Suppose

$$|a_k| \le \frac{A}{s^{|k|}}, \quad |b_k| \le \frac{B}{b^{|k|}}, \quad |c_k| \le \frac{C}{s^{|k|}}, \quad k \in \mathbb{Z},$$

for some constants A,B,C>0,b,s>1. Choose β such that $b/s<\beta< b$.

One gets

$$\left| \sum_{n_1, \dots, n_{p-1} \in \mathbb{Z}} c_{n_0} a_{n_1} \dots a_{n_{p-1}} a_{k-(n_1 + \dots + n_{p-1})} \right| \le \frac{\alpha^p A^p C}{s^{|k|}} (\frac{b}{\beta})^{|k|}$$

for some $\alpha = \alpha(s, b, \beta)$.

• For $k \geq M$ set

$$[a_k^-, a_k^+]_{new} := \frac{\alpha^p A^p BC}{(\beta s)^k} [-1, 1].$$

Increasing m

- Problem: For a fixed (small) m one gets stuck in tightening after a few steps, because the error $\varepsilon^{(m+)}$ is essentially fixed.
- Solution: Increase m. For the current collection $\mathcal{B}_k = \mathcal{B}_k^{(m)}$ set

$$\mathcal{B}_k^{(m+1)} = \left\{ B \times [a_m^-, a_m^+] : B \in \mathcal{B}_k^{(m)} \right\}.$$

and define $\mathcal{F}^{(m+1)}:\mathcal{B}_k^{(m+1)}\rightrightarrows\mathcal{B}_k^{(m+1)}$ suitably (via $F^{(m+1)}$).

ullet Theorem 3 . If $\mathcal{I}^{(m)}$ is an isolating neighborhood for $\mathcal{F}^{(m)}$ and if

$$f_m(Z) \subset (a_m^-, a_m^+),$$

then

$$\mathcal{I}^{(m+1)} = \{B \times [a_m^-, a_m^+] : B \in \mathcal{I}^{(m)}\}$$

is an isolating neighborhood for $\mathcal{F}^{(m+1)}$.

Example computation

We consider the following parameters

$$\mu = 3.5$$
, $b_k = 2^{-k}$, $c_0 = 0.8$, $c_1 = -0.2$ and $c_k = 0$ for $k > 1$.

1. Running a simulation for m = 50:

2. \rightsquigarrow exponential estimate for the a_k with A=1 and s=2; initial bounds

k	a_k^-	a_k^+
0	0.2	1.5
1	0.05	0.5
2	-0.001	0.1
2 < k < M	-2^{-k}	2^{-k}

3. Computing a covering of the maximal invariant set in the chosen region:

4. Guessing invariant sets:

5. The nonlinear error for a box B(c,r):

$$\varepsilon_k^{(m),nl}(c) = |\mu b_k| \sum_{j=-J}^{J} |c_j| \sum_{\ell \in L(m,k,j)} r_\ell r_{k-\ell-j}, \quad k = 0, \dots, m-1.$$

6. Updating the bounds a_k^{\pm} :

$$\varepsilon^{(m+)} < (0.1, 0.2, 0.6, 2, 5)^T \cdot 10^{-5};$$

7. Combinatorial isolating neighborhood for $\mathcal{F}^{(m)}$:

8. Homology of the corresponding index pair:

$$H_*(N_1, N_0) \cong (0, \mathbb{Z}^8, 0, 0, \ldots)$$

and the map in homology:

$$F_1 := \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Theorem 4 The map Φ possesses a heteroclinic orbit

$$(a_j)_{j\in\mathbb{Z}}, \quad a_j\in L^2([-\pi,\pi]),$$

connecting a fixed point $p_1 \in L^2([-\pi, \pi])$ of Φ to a period two point $p_2 \in L^2([-\pi, \pi])$ of Φ , such that for the coordinates $(p_1), (p_2)$ and $(a_j), j \in \mathbb{Z}$,

$$(p_1), (p_2), (a_j) \in |\mathcal{I}^{(12)}| \times \prod_{k=12}^{49} [a_k^-, a_k^+] \times \prod_{k=50}^{\infty} \frac{1}{2^k} [-1, 1], \quad j \in \mathbb{Z}.$$

Here the a_k^{\pm} are the final bounds.

2. Example computation

Theorem. For the parameter values [...] there is an invariant set, contained in [...], on which Φ is semi-conjugate to the subshift given by the transition graph.

Software

• CHomP — Computational Homology Program

```
http://http://www.math.gatech.edu/~chom/
```

Tomasz Kaczynski, Konstantin Mischaikow, Marian Mrozek, Pawel Pilarczyk.

• GAIO — Global analysis of invariant objects

```
http://www.upb.de/math/~agdellnitz/gaio
```

Michael Dellnitz, O.J.

Scripts for these computations:

```
http://www.upb.de/math/~junge/kot_schaffer/code
```