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Line of reasoning

infinite dimensional map

↓Galerkin + truncation estimate

finite dimensional multivalued map

↓spatial discretization (GAIO)

combinatorial multivalued map (directed graph)

↓graph algorithms

combinatorial index pair

↓computational homology (CHomP)

Conley index for finite dimensional continuous selector

↓lifting

Conley index for original map



The map

The Kot-Schaffer growth-dispersal model for plants:

Φ : L2 → L2, Φ(a)(y) =
1

2π

∫ π

−π
b(x, y) µ a(x)

(
1−

a(x)

c(x)

)
dx,

a, b, c ∈ L2([−π, π]), µ > 0, b(x, y) = b(x− y).

Equivalent countable system

Using a basis of Fourier-modes ϕk = exp(ik·) for L2 one gets the countable

system of maps:

fk(a) = µbk

ak −
∑

j+l+n=k

cjalan

 , k ∈ Z,

ak, bk, ck Fourier coefficients of a, b, c−1.



Line of reasoning

• Let Pm : L2 → Xm = span{ϕ0, . . . , ϕm−1} be the projection onto the

first m modes and consider the finite dimensional map

f(m) : Xm → Xm, f(m) = Pm ◦ f ;

• What is the relation between the dynamics of f and of f(m)?

• Write

f(a) = f(Pma) + (f(a)− f(Pma))

and suppose that we can bound f(a)− f(Pma) on a compact subset

Z = W × V, W ⊂ Xm,

of L2:

|f(a)− f(Pma)| < ε(m) for all a ∈ Z.



• Now consider a multivalued map F (m) : W ⇒ Xm with the property

that for all a ∈ Z

Pmf(a) ∈ F (m)(Pma).

• Compute objects of interest for F (m) via a rigorous set-oriented ap-

proach in combination with the Conley-index theory:

– cover the maximal invariant set of F (m) in W ;

– compute approximate locations of objects of interest (periodic

points, connecting orbits, chain recurrent sets);

– construct an isolating neighborhood and an index pair of the de-

sired invariant set;

– compute its Conley index ;

• Lift the information on F (m), resp. f(m), to the full system Φ.



Finite dimensional multivalued map

F
(m)
k (a0, . . . , am−1) = µbk

ak −
∑

j+l+n=k
0≤j,l,n≤m−1

cjalan

+ ε
(m)
k [−1,1] ,

k = 0,1, . . . , m− 1.

The error ε
(m)
k has been computed in such a way that∣∣∣∣fk(a)− f

(m)
k (a0, . . . , am−1)

∣∣∣∣ ∈ ε
(m)
k [−1,1]

for all a in some compact set Z = W × V ⊂ L2.



Objects in Phase Space

• A full trajectory of F is given by σ : Z → X, σ(n + 1) ∈ F (σ(n));

• A set S ⊂ W is invariant, if for every x ∈ S there exists a full trajectory

σ : Z → S with σ(0) = x.

• The maximal invariant set of a subset S is given by

Inv(S, F ) = {x ∈ S | ∃σ : Z → S, σ(0) = x}.

• An isolating neighborhood is a compact set I ⊂ W such that

Inv(I, F ) ⊂ int(I).

An invariant set is isolated, if it is the maximal invariant set of some

isolating neighborhood.



Spatial Discretization

• Goal: global analysis of F (i.e. computation of invariant sets);

• partition (part of) W into a finite grid B = {B1, . . . , Bb} of compact
connected sets, W =

⋃b
i=1 Bi

• and define a multivalued map F : B → B by

F(B) =
{
B′ ∈ B | F (B) ∩B′ 6= ∅

}
;

• Implementation: B in a binary tree

F as a (sparse) matrix ≡ directed graph.



Objects for F

• The notions of trajectory, invariant set and maximal invariant set

directly carry over to F.

• For S ⊂ B let |S| denote the union of the elements in S and let

o(S) = {B ∈ B | B ∩ |S| 6= ∅}

be the smallest representable neighborhood of S.

• A (combinatorial) isolating neighborhood for F is a set I ⊂ B such

that

o(Inv(I,F)) ⊂ I.

Proposition 1 If I is an isolating neighborhood for F, then |I| is an

isolating neighborhood for F .



Index pairs

Let I be an isolating neighborhood for F. A pair N = (N1,N0), N0 ⊂
N1 ⊂ I is an index pair if

Theorem 1 (Szymczak, 97) Let S be an isolated invariant set for F
and let

N1 = S ∪ F(S), N0 = N1\S.

Then N = (N1,N0) is an index pair.



Computing Isolating Neighborhoods

• Consider the transition matrix

P = (pij), pij =

{
1, if Bi ∈ F(Bj),
0, else.

k-periodic points of F ↔ nonzero diagonal entries of P k;

• Consider the graph G = (B, V ),

V = {(B, B′) : B′ ∈ F(B)}.

– recurrent sets of F ↔ strongly connected components of G;

– connecting orbits of F ↔ shortest paths (Dijkstra’s algorithm);

• P and G are typically sparse and can be stored explicitely.



Turning the guess into a true isolating nbhd



Computing F

• Heuristic approach: choose a finite set T ⊂ B ∈ B of test points in

each box and set

F(B) := {B′ ∈ B | f(T ) ∩B′ 6= ∅}.

• Note that since B is stored in a binary tree the complexity of this

approximation of F(B) is only O(#T · log(#B)).

• Rigorous approach:

– Write

f(x + h) = f(x) + Df(x)h + fnl(x, h).

– For the box B = B(c, r) ∈ B (c: center, r: radius) compute εnl(c)

such that

max
|h|≤r

∣∣∣fnl(c, h)
∣∣∣ ≤ εnl(c)



– For x ∈ B set

F (m)(x) = B(f(c), |Df(c)|r + εnl(c) + ε(m))

– Finally define

F(B(c, r)) = {B′ ∈ B | F (c) ∩B′ 6= ∅}.

– Note: the set F(B) can be determined by a single depth first search

of the tree:

F = cap(B, C, k)

if B ∩ C 6= ∅
if depth(B) = k

F := F ∪ {B}
else

F := F ∪ cap(B+, C, k) ∪ cap(B−, C, k)

return F

• control of round off via interval arithmetic (BIAS, Profil, b4m, GAIO);



Lifting to the full system

• The compact set Z = W × V ⊂ L2 is of the form

Z =
∞∏

k=0

[a−k , a+
k ].

• So far we computed an isolating neighborhood I(m) ⊂ W for f(m).

• Theorem 2 . If I(m) is an isolating neighborhood for f(m) and if

fk(Z) ⊂ (a−k , a+
k ), k ≥ m,

then

I = I(m) ×
∞∏

k=m

[a−k , a+
k ]

is an isolating neighborhood for Φ. In particular, the Conley index for

a corresponding index pair is the same as for I(m).



Tightening isolating neighborhoods

Algorithm 1 (Dellnitz, Hohmann, 97) Given the initial collection B0,

one inductively obtains Bk from Bk−1 for k = 1,2, . . . in two steps.

1. Subdivision: Construct a new collection B̂k by bisecting each box in

Bk−1 with respect to some coordinate direction.

2. Selection: Compute the relevant subset Bk of B̂k, i.e. set

Bk = Inv(B̂k,F).



Tightening the infinite tail

• For k = m, . . . compute an interval Ik, such that

fk

 ∞∏
k=0

[a−k , a+
k ]

 ⊂ Ik

and set

[a−k , a+
k ]new := Ik.

• Consider a polynomial nonlinearity

c(x)a(x)p

in Φ.

The corresponding terms in the countable system read

ak 7→
∑

n0,...,np−1∈Z
cn0an1 . . . anp−1ak−(n0+···+np−1)

.



• Regularity assumptions. Suppose

|ak| ≤
A

s|k|
, |bk| ≤

B

b|k|
, |ck| ≤

C

s|k|
, k ∈ Z,

for some constants A, B, C > 0, b, s > 1. Choose β such that b/s < β <

b.

• One gets

|
∑

n1,...,np−1∈Z
cn0an1 . . . anp−1ak−(n1+...+np−1)

| ≤
αpApC

s|k|
(
b

β
)|k|

for some α = α(s, b, β).

• For k ≥ M set

[a−k , a+
k ]new :=

αpApBC

(βs)k
[−1,1].



Increasing m

• Problem: For a fixed (small) m one gets stuck in tightening after a

few steps, because the error ε(m+) is essentially fixed.

• Solution: Increase m. For the current collection Bk = B(m)
k set

B(m+1)
k =

{
B × [a−m, a+

m] : B ∈ B(m)
k

}
.

and define F(m+1) : B(m+1)
k ⇒ B(m+1)

k suitably (via F (m+1)).

• Theorem 3 . If I(m) is an isolating neighborhood for F(m) and if

fm(Z) ⊂ (a−m, a+
m),

then

I(m+1) = {B × [a−m, a+
m] : B ∈ I(m)}

is an isolating neighborhood for F(m+1).



Example computation

We consider the following parameters

µ = 3.5, bk = 2−k, c0 = 0.8, c1 = −0.2 and ck = 0 for k > 1.

1. Running a simulation for m = 50:



2.  exponential estimate for the ak with A = 1 and s = 2; initial bounds

k a−k a+
k

0 0.2 1.5
1 0.05 0.5
2 −0.001 0.1

2 < k < M −2−k 2−k

3. Computing a covering of the maximal invariant set in the chosen

region:



4. Guessing invariant sets:

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32



5. The nonlinear error for a box B(c, r):

ε
(m),nl
k (c) = |µbk|

J∑
j=−J

|cj|
∑

`∈L(m,k,j)

r`rk−`−j, k = 0, . . . , m− 1.

6. Updating the bounds a±k :

ε(m+) < (0.1,0.2,0.6,2,5)T · 10−5;

7. Combinatorial isolating neighborhood for F(m):



8. Homology of the corresponding index pair:

H∗(N1, N0)
∼= (0, Z8, 0, 0, . . .)

and the map in homology:

F1 :=



0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1
0 0 1 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0





Theorem 4 The map Φ possesses a heteroclinic orbit

(aj)j∈Z, aj ∈ L2([−π, π]),

connecting a fixed point p1 ∈ L2([−π, π]) of Φ to a period two point

p2 ∈ L2([−π, π]) of Φ, such that for the coordinates (p1), (p2) and (aj),

j ∈ Z,

(p1), (p2), (aj) ∈ |I(12)| ×
49∏

k=12

[a−k , a+
k ]×

∞∏
k=50

1

2k
[−1,1], j ∈ Z.

Here the a±k are the final bounds.

file:ex1_12d_bounds.txt


2. Example computation
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Theorem. For the parameter values [...] there is an in-

variant set, contained in [...], on which Φ is semi-conjugate

to the subshift given by the transition graph.



Software

• CHomP — Computational Homology Program

http://http://www.math.gatech.edu/~chom/

Tomasz Kaczynski, Konstantin Mischaikow, Marian Mrozek, Pawel
Pilarczyk.

• GAIO — Global analysis of invariant objects

http://www.upb.de/math/~agdellnitz/gaio

Michael Dellnitz, O.J.

• Scripts for these computations:

http://www.upb.de/math/~junge/kot_schaffer/code


