Multivalued Discrete Dynamical System Framework for Surface Modeling Part I: Mathematical model

Tomasz Kaczynski with M. Allili, D.Corriveau, S. Derivière, A. Trahan

Département de Mathématiques Faculté des Sciences Université de Sherbrooke

June 2006, Bedlewo, Poland

Outline

- 1
 - Part I: Mathematical model
 - Why discrete model?
 - Background from the classical Morse theory
 - Critical components
 - Dynamical systems
 - Stable, unstable manifolds, and Morse connections graph

Why discrete model?

Background from the classical Morse theory Critical components

Dynamical systems

Stable, unstable manifolds, and Morse connections graph

Outline

- Why discrete model?
- Background from the classical Morse theory
- Critical components
- Dynamical systems
- Stable, unstable manifolds, and Morse connections graph

Why discrete model? Background from the classical Morse the

Background from the classical Morse theory
Critical components

Stable, unstable manifolds, and Morse connections graph

Classical CS Applications of Morse Theory

Outline

- Part I: Mathematical model
 - Why discrete model?
 - Background from the classical Morse theory
 - Critical components
 - Dynamical systems
 - Stable, unstable manifolds, and Morse connections graph

Classical Morse Theory

Let *M* be a smooth manifold and $f: M \to \mathbb{R}$ a smooth function.

definition

- f Morse function ⇔ all of its critical points are non degenerate.
- The index $\lambda(p)$ is the number of negative eigenvalues of the determinant of the Hessian $H_f(p)$.

$$\lambda(p) = \dim W^s(p) = \dim \left\{ q \in M \mid \lim_{m \to \infty} \varphi(t, q) = p \right\}$$

• $W^u(p) = \{ q \in M \mid \lim_{m \to -\infty} \varphi(t, q) = p \},$ $\dim W^u(p) = \dim(M) - \lambda(p).$

Classical Morse Theory

Let M be a smooth manifold and $f: M \to \mathbb{R}$ a smooth function.

definition

- f Morse function
 ⇔ all of its critical points are non degenerate.
- The index $\lambda(p)$ is the number of negative eigenvalues of the determinant of the Hessian $H_f(p)$.

$$\lambda(p) = \dim W^s(p) = \dim \left\{ q \in M \mid \lim_{m \to \infty} \varphi(t,q) = p \right\},$$

•
$$W^u(p) = \{ q \in M \mid \lim_{m \to -\infty} \varphi(t, q) = p \},$$

 $\dim W^u(p) = \dim(M) - \lambda(p).$

Classical Morse Theory

Let M be a smooth manifold and $f: M \to \mathbb{R}$ a smooth function.

definition

- f Morse function
 ⇔ all of its critical points are non degenerate.
- The index $\lambda(p)$ is the number of negative eigenvalues of the determinant of the Hessian $H_f(p)$.

$$\lambda(p) = \dim W^{s}(p) = \dim \left\{ q \in M \mid \lim_{m \to \infty} \varphi(t, q) = p \right\},$$

Covering properties

• For $p \neq q$:

$$W^{u}(p) \cap W^{u}(q) = \emptyset$$
 and $W^{s}(p) \cap W^{s}(q) = \emptyset$. (1)

• If $\{p_1, \ldots, p_k\}$ represents the set of all critical points of a f:

$$\bigcup_{i=1}^{k} W^{s}(p_i) = M \text{ and }$$
 (2)

$$\bigcup_{i=1}^{k} W^{u}(p_i) = M \tag{3}$$

Covering properties

• For $p \neq q$:

$$W^{u}(p) \cap W^{u}(q) = \emptyset$$
 and $W^{s}(p) \cap W^{s}(q) = \emptyset$. (1)

• If $\{p_1, \ldots, p_k\}$ represents the set of all critical points of a f:

$$\bigcup_{i=1}^k W^s(p_i) = M \text{ and }$$
 (2)

$$\bigcup_{i=1}^{k} W^{u}(p_i) = M \tag{3}$$

Smooth Morse Connection Graph

Definition

The smooth Morse Connections Graph is a graph whose nodes V are critical points of f and edges E are defined as follows:

$$E = \{(p, q) \in V \times V \mid \exists \text{ trajectory connecting } p \text{ to } q\}$$

Equivalently, (p, q) is an edge of the graph if

$$W^u(p) \cap W^s(q) \neq \emptyset$$
 or $W^u(q) \cap W^s(p) \neq \emptyset$.

Outline

- Why discrete model?
- Background from the classical Morse theory
- Critical components
- Dynamical systems
- Stable, unstable manifolds, and Morse connections graph

The values of f are only known on a set of pixels, denoted by X. Thus, $f: X \longrightarrow \mathbb{R}$ is a discrete function. We interpret pixels $x \in X$ as unit squares of the form $x = [k, k+1] \times [l, l+1], k, l$ integers, for a chosen grid scale. Given any $A \subset X$ the support of A is the set $|A| \in \mathbb{R}^2$ given by

$$|A| = \bigcup A$$
.

Thus the association $A \mapsto |A|$ provides the passage from combinatorics to geometry.

Definition

Two pixels x and y in X are

- 0-connected, denoted by x0y, if \exists a sequence $x_1 = x, x_2, \dots x_n = y$ such that $x_i \cap x_{i+1}$ contains a vertex for all i,
- 1-connected, denoted by x1y, if \exists a sequence $x_1 = x, x_2, \dots x_n = y$ such that $x_i \cap x_{i+1}$ contains an edge

This relation is an equivalence relation and the 1-connectedness implies the 0-connectedness.

Figure: x1y, x1z, y1t, z1t, x0t, y0z.

Definition

Two pixels x and y in X are

- 0-connected, denoted by x0y, if \exists a sequence $x_1 = x, x_2, \dots x_n = y$ such that $x_i \cap x_{i+1}$ contains a vertex for all i,
- 1-connected, denoted by x1y, if \exists a sequence $x_1 = x, x_2, \dots x_n = y$ such that $x_i \cap x_{i+1}$ contains an edge.

This relation is an equivalence relation and the 1-connectedness implies the 0-connectedness.

Figure: x1y, x1z, y1t, z1t, x0t, y0z.

Definition

A component \mathcal{X} is a maximal set of 0-connected pixels with the same value of f.

```
1 -1 1 1 1
1 0 0 1 2
1 1 1 0 1
1 1 1 2 1
```

Figure: Pixels with the 0 value form a component.

Definition

The distance between two adjacents pixels $x, y \in X$ is

$$dist(x,y) = \begin{cases} \sqrt{2} & \text{if } x \cap y \text{ is a vertex,} \\ 1 & \text{if } x \cap y \text{ is an edge.} \end{cases}$$

Definition

The directional derivative of f at x in the direction of y is

$$\frac{\partial f}{\partial y}(x) = \frac{f(y) - f(x)}{dist(x, y)}.$$

By convention, we define $\frac{\partial f}{\partial x}(x) = 0$.

Definition

The distance between two adjacents pixels $x, y \in X$ is

$$dist(x,y) = \begin{cases} \sqrt{2} & \text{if } x \cap y \text{ is a vertex,} \\ 1 & \text{if } x \cap y \text{ is an edge.} \end{cases}$$

Definition

The directional derivative of f at x in the direction of y is

$$\frac{\partial f}{\partial y}(x) = \frac{f(y) - f(x)}{dist(x, y)}.$$

By convention, we define $\frac{\partial f}{\partial x}(x) = 0$.

Definition

$$\overline{wrap}(x) := \left\{ y \in bd(x) \mid \frac{\partial f}{\partial y}(x) > 0 \right\},$$

$$\underline{wrap}(x) := \left\{ y \in bd(x) \mid \frac{\partial f}{\partial y}(x) < 0 \right\}.$$

$$bd(x) = wrap(x) \setminus \{x\}.$$

If A is subset of X:

$$\overline{wrap}(A) := \{ y \in bd(A) \mid f(y) > f(x) \text{ for all } x \in A \cap bd(y) \},$$

 $\overline{wrap}(A) := \{ y \in bd(A) \mid f(y) < f(x) \text{ for all } x \in A \cap bd(y) \}.$

Definition

$$\overline{wrap}(x) := \left\{ y \in bd(x) \mid \frac{\partial f}{\partial y}(x) > 0 \right\},$$

$$\underline{wrap}(x) := \left\{ y \in bd(x) \mid \frac{\partial f}{\partial y}(x) < 0 \right\}.$$

$$bd(x) = wrap(x) \setminus \{x\}.$$

If A is subset of X:

$$\overline{\textit{wrap}} \ (A) := \{ y \in \textit{bd}(A) \mid \textit{f}(y) > \textit{f}(x) \text{ for all } x \in A \cap \textit{bd}(y) \},$$

$$\underline{wrap} (A) := \{ y \in bd(A) \mid f(y) < f(x) \text{ for all } x \in A \cap bd(y) \}.$$

Definition

Given a function $f: X \to \mathbb{R}$, a component $\mathcal{X} \subset X$ is called a

2 0 4 0 2 1 3 4 0 4 0 4

Figure: Adjacent center pixels with values 1 and 3 are both saddles and they form a component which is not a level set of *f* but it has a property of a 4-saddle.

Definition

A k-saddle component is a maximal connected set of saddle pixels such that \overline{wrap} $(\mathcal{X}) \neq \emptyset$ and its support is 1-disconnected with (k+1) 1-connected components, $k \geq 1$.

Part I: Mathematical model

Why discrete model?
Background from the classical Morse theory
Critical components
Dynamical systems
Stable, unstable manifolds, and Morse connections graph

Definition

A set \mathcal{X} is a critical component if it is either a minimum, maximum or a k-saddle.

Part I: Mathematical model

Why discrete model?

Background from the classical Morse theory

Critical components

Dynamical systems

Stable, unstable manifolds, and Morse connections graph

Outline

- Why discrete model?
- Background from the classical Morse theory
- Critical components
- Dynamical systems
- Stable, unstable manifolds, and Morse connections graph

Dynamical systems

Stable, unstable manifolds, and Morse connections graph

- A map $F: X \times \mathbb{Z} \rightrightarrows X$ is called a discrete multivalued dynamical system (dmds) on X if:
 - ① For all $x \in X$, $F(x, 0) = \{x\}$;
 - ② For all $n, m \in \mathbb{Z}$ with nm > 0 and all $x \in X$, F(F(x, n), m) = F(x, n + m).
 - A map F : X × N ⇒ X is called a discrete multivalued semidynamical system (dmss) if (1) holds, and if (2) is satisfied for all n, m ∈ N.

Dynamical systems

Stable, unstable manifolds, and Morse connections graph

- A map F: X × Z ⇒ X is called a discrete multivalued dynamical system (dmds) on X if:
 - **1** For all $x \in X$, $F(x, 0) = \{x\}$;
 - ② For all $n, m \in \mathbb{Z}$ with nm > 0 and all $x \in X$, F(F(x, n), m) = F(x, n + m).
- A map F: X × N ⇒ X is called a discrete multivalued semidynamical system (dmss) if (1) holds, and if (2) is satisfied for all n, m ∈ N.

Dynamical systems

Stable, unstable manifolds, and Morse connections graph

- A map F: X × Z ⇒ X is called a discrete multivalued dynamical system (dmds) on X if:
 - **1** For all $x \in X$, $F(x, 0) = \{x\}$;
 - 2 For all $n, m \in \mathbb{Z}$ with nm > 0 and all $x \in X$, F(F(x, n), m) = F(x, n + m).
- A map F: X × N ⇒ X is called a discrete multivalued semidynamical system (dmss) if (1) holds, and if (2) is satisfied for all n, m ∈ N.

Stable, unstable manifolds, and Morse connections graph

Dynamical systems

- A map F: X × Z ⇒ X is called a discrete multivalued dynamical system (dmds) on X if:
 - **1** For all $x \in X$, $F(x, 0) = \{x\}$;
 - ② For all $n, m \in \mathbb{Z}$ with nm > 0 and all $x \in X$, F(F(x, n), m) = F(x, n + m).
- A map $F: X \times \mathbb{N} \rightrightarrows X$ is called a discrete multivalued semidynamical system (dmss) if (1) holds, and if (2) is satisfied for all $n, m \in \mathbb{N}$.

We propose several experimental approaches to defining a dynamics of a function $f: X \to \mathbb{R}$ on a set of pixels X. For abbreviation, given $x \in X$, let

$$max = \max_{y \in wrap(x)} \frac{\partial f}{\partial y}(x)$$
 and $min = \min_{y \in wrap(x)} \frac{\partial f}{\partial y}(x)$.

Stable, unstable manifolds, and Morse connections graph

Exact steepest trajectory

$$\mathcal{F}_{+}(x) = \left\{ y \in wrap(x) \mid \frac{\partial f}{\partial y}(x) = max \right\},$$

$$\mathcal{F}_{-}(x) = \left\{ y \in wrap(x) \mid \frac{\partial f}{\partial y}(x) = min \right\}.$$

Admissible error bound approach

$$\mathcal{F}_{+}(x) := \left\{ y \in wrap(x) \mid \frac{\partial f}{\partial y}(x) \in [(1 - \epsilon)max, max] \right\}$$

'Permissive' approach

$$\mathcal{F}_{-}(x) := \left\{ y \in wrap(x) \mid \frac{\partial f}{\partial y}(x) \in [min, (1 - \epsilon)min] \right\}.$$

$$\mathcal{F}_{+}(x) := \left\{ y \in wrap(x) \mid \frac{\partial f}{\partial y}(x) \ge 0 \right\},$$

$$\mathcal{F}_{-}(x) := \left\{ y \in \mathit{wrap}(x) \mid \frac{\partial f}{\partial y}(x) \leq 0 \right\}.$$

Outline

- Why discrete model?
- Background from the classical Morse theory
- Critical components
- Dynamical systems
- Stable, unstable manifolds, and Morse connections graph

Stable, unstable manifolds, and Morse connections graph

Definition

Let $\mathcal{F}: X \rightrightarrows X$ be a generator of a dmss. The stable and unstable manifolds of a point $x \in X$ relatively to \mathcal{F} are

$$\begin{array}{ll} W^u(x,\mathcal{F}) &:= \bigcup_{n \geq 1} \mathcal{F}^n(x); \\ W^s(x,\mathcal{F}) &:= \bigcup_{n \geq 1} \mathcal{F}^{-n}(x). \end{array}$$

Definition

Let $\mathcal{F}: X \rightrightarrows X$ be a generator of a dmss. The stable and unstable manifolds of a point $x \in X$ relatively to \mathcal{F} are

$$W^{u}(x,\mathcal{F}) := \bigcup_{n\geq 1} \mathcal{F}^{n}(x);$$

 $W^{s}(x,\mathcal{F}) := \bigcup_{n\geq 1} \mathcal{F}^{-n}(x).$

The stable and unstable manifolds of a critical component *P* are defined by

$$\begin{array}{ll} W^u(P,\mathcal{F}) &:= \bigcup_{x \in P} W^u(x); \\ W^s(P,\mathcal{F}) &:= \bigcup_{x \in P} W^s(x). \end{array}$$

Part I: Mathematical model

Why discrete model? Background from the classical Morse theory Critical components Dynamical systems

Stable, unstable manifolds, and Morse connections graph

Proposition

If p and q are pixels such that $W^u(p) \cap W^s(q) \neq \emptyset$, then there exists a trajectory from p to q.

Why discrete model?

Proposition

If p and q are pixels such that $W^u(p) \cap W^s(q) \neq \emptyset$, then there exists a trajectory from p to q.

Corollary

Le P and Q be critical components such that $W^u(P)\cap W^s(Q)\neq\emptyset$. Then there exists a trajectory connecting P to Q, in the sense, that it connects a point in P to a point in Q.

Stable, unstable manifolds, and Morse connections graph

Definition

Let *P* and *Q* be two critical components of $f: X \to \mathbb{R}$. There is

• an upward connection from P to Q, denoted $P \nearrow Q$, if

$$W^{u}\left(P,\mathcal{F}+\right)\cap W^{s}\left(Q,\mathcal{F}_{+}\right)\neq\emptyset;$$

ullet a downward connection from P to Q, denoted $P \setminus_{X} Q$, if

$$W^{u}(P,\mathcal{F}_{-})\cap W^{s}(Q,\mathcal{F}_{-})\neq\emptyset.$$

Definition

Let *P* and *Q* be two critical components of $f: X \to \mathbb{R}$. There is

• an upward connection from P to Q, denoted $P \nearrow Q$, if

$$W^{u}\left(P,\mathcal{F}+\right)\cap W^{s}\left(Q,\mathcal{F}_{+}\right)\neq\emptyset;$$

• a downward connection from P to Q, denoted $P \setminus Q$, if

$$W^{u}(P,\mathcal{F}_{-})\cap W^{s}(Q,\mathcal{F}_{-})\neq\emptyset.$$

Stable, unstable manifolds, and Morse connections graph

Covering property

Theorem

Let $\{P_1, ...; P_k\}$ be the set of all critical components of $f: X \to \mathbb{R}$. Then

$$\bigcup_{i=1}^k W^s(P_i,\mathcal{F}_+) = X = \bigcup_{i=1}^k W^s(P_i,\mathcal{F}_-).$$

Morse Connection Graph

Definition

The Morse Connections Graph $MCG_f = (V_f, E_f)$ is a graph whose nodes V_f and edges E_f are defined as follows:

$$V_f = \{ \text{critical components of } f \} ;$$

$$E_f = \{(P_i, P_j) \in V_f \times V_f \mid P_i \nearrow P_j \text{ or } P_i \searrow P_j\}$$

Equivalently, (P_i, P_j) is an edge of the graph if

$$W^u(P_i, \mathcal{F}_+) \cap W^s(P_i, \mathcal{F}_+) \neq \emptyset$$
 or $W^u(P_i, \mathcal{F}_-) \cap W^s(P_i, \mathcal{F}_-) \neq \emptyset$.

