
Outline

Multivalued Discrete Dynamical System
Framework for Surface Modeling

Part I: Mathematical model

Tomasz Kaczynski
with M. Allili, D.Corriveau,

S. Derivière, A. Trahan
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Classical Morse Theory

Let M be a smooth manifold and f : M → R a smooth function.

definition
f Morse function ⇔ all of its critical points are non
degenerate.
The index λ(p) is the number of negative eigenvalues of
the determinant of the Hessian Hf (p).

λ(p) = dimW s(p) = dim
{

q ∈ M | lim
m→∞

ϕ(t , q) = p
}

,

W u(p) = {q ∈ M | limm→−∞ ϕ(t , q) = p} ,
dimW u(p) = dim(M)− λ(p).
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Covering properties

For p 6= q:

W u (p) ∩W u (q) = ∅ and W s (p) ∩W s (q) = ∅. (1)

If {p1, . . . , pk} represents the set of all critical points of a f :

k⋃
i=1

W s (pi) = M and (2)

k⋃
i=1

W u (pi) = M (3)
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Smooth Morse Connection Graph

Definition

The smooth Morse Connections Graph is a graph whose nodes
V are critical points of f and edges E are defined as follows:

E = {(p, q) ∈ V × V | ∃ trajectory connecting p to q}

Equivalently, (p, q) is an edge of the graph if

W u(p) ∩W s(q) 6= ∅ or W u(q) ∩W s(p) 6= ∅.
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The values of f are only known on a set of pixels, denoted by
X . Thus, f : X −→ R is a discrete function.
We interpret pixels x ∈ X as unit squares of the form
x = [k , k + 1]× [l , l + 1], k , l integers, for a chosen grid scale.
Given any A ⊂ X the support of A is the set |A| ∈ R2 given by

|A| =
⋃

A.

Thus the association A 7→ |A| provides the passage from
combinatorics to geometry.
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Definition
Two pixels x and y in X are

0-connected, denoted by x0y , if ∃ a sequence
x1 = x , x2, . . . xn = y such that xi ∩ xi+1 contains a vertex
for all i ,
1-connected, denoted by x1y , if ∃ a sequence
x1 = x , x2, . . . xn = y such that xi ∩ xi+1 contains an edge.

This relation is an equivalence relation and the
1-connectedness implies the 0-connectedness.

x y
z t

Figure: x1y , x1z, y1t , z1t , x0t , y0z.
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Definition
A component X is a maximal set of 0-connected pixels with the
same value of f .

1 -1 1 1 1
1 0 0 1 2
1 1 1 0 1
1 1 1 2 1

Figure: Pixels with the 0 value form a component.
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Definition

The distance between two adjacents pixels x , y ∈ X is

dist(x , y) =

{ √
2 if x ∩ y is a vertex,

1 if x ∩ y is an edge.

Definition

The directional derivative of f at x in the direction of y is

∂f
∂y

(x) =
f (y)− f (x)

dist(x , y)
.

By convention, we define
∂f
∂x

(x) = 0.
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Definition

wrap (x) :=

{
y ∈ bd(x) | ∂f

∂y
(x) > 0

}
,

wrap (x) :=

{
y ∈ bd(x) | ∂f

∂y
(x) < 0

}
.

bd(x) = wrap(x) \ {x}.

If A is subset of X :

wrap (A) := {y ∈ bd(A) | f (y) > f (x) for all x ∈ A ∩ bd(y)} ,

wrap (A) := {y ∈ bd(A) | f (y) < f (x) for all x ∈ A ∩ bd(y)} .
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Definition

Given a function f : X → R, a component X ⊂ X is called a

maximum ⇐⇒ ∂f
∂y

(x) < 0, ∀x ∈ X ,∀y ∈ bd(x) ∩ bd(X )

⇐⇒ f (y) < f (x), ∀x ∈ X ,∀y ∈ bd(x) ∩ bd(X )

minimum ⇐⇒ ∂f
∂y

(x) > 0, ∀x ∈ X ,∀y ∈ bd(x) ∩ bd(X )

⇐⇒ f (y) > f (x), ∀x ∈ X ,∀y ∈ bd(x) ∩ bd(X ).
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2 0 4 0
2 1 3 4
0 4 0 4

Figure: Adjacent center pixels with values 1 and 3 are both saddles
and they form a component which is not a level set of f but it has a
property of a 4-saddle.

Definition

A k -saddle component is a maximal connected set of saddle
pixels such that wrap (X ) 6= ∅ and its support is 1-disconnected
with (k + 1) 1-connected components, k ≥ 1.
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Definition
A set X is a critical component if it is either a minimum,
maximum or a k-saddle.
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Definition

A map F : X × Z−→→X is called a discrete multivalued
dynamical system (dmds) on X if:

1 For all x ∈ X , F (x , 0) = {x} ;
2 For all n, m ∈ Z with nm > 0 and all x ∈ X ,

F (F (x , n), m) = F (x , n + m).

A map F : X × N−→→X is called a discrete multivalued
semidynamical system (dmss) if (1) holds, and if (2) is
satisfied for all n, m ∈ N.
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We propose several experimental approaches to defining a
dynamics of a function f : X → R on a set of pixels X . For
abbreviation, given x ∈ X , let

max = max
y∈wrap(x)

∂f
∂y

(x) and min = min
y∈wrap(x)

∂f
∂y

(x).
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Exact
steepest
trajectory

F+(x) =

{
y ∈ wrap(x) | ∂f

∂y
(x) = max

}
,

F−(x) =

{
y ∈ wrap(x) | ∂f

∂y
(x) = min

}
.

Admissible
error bound
approach

F+(x) :=

{
y ∈ wrap(x) | ∂f

∂y
(x) ∈ [(1− ε)max , max ]

}
,

F−(x) :=

{
y ∈ wrap(x) | ∂f

∂y
(x) ∈ [min, (1− ε)min]

}
.

‘Permissive’
approach

F+(x) :=

{
y ∈ wrap(x) | ∂f

∂y
(x) ≥ 0

}
,

F−(x) :=

{
y ∈ wrap(x) | ∂f

∂y
(x) ≤ 0

}
.
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Definition

Let F : X −→→X be a generator of a dmss. The stable and
unstable manifolds of a point x ∈ X relatively to F are

W u(x ,F) :=
⋃

n≥1Fn(x);

W s(x ,F) :=
⋃

n≥1F−n(x).
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Definition

Let F : X −→→X be a generator of a dmss. The stable and
unstable manifolds of a point x ∈ X relatively to F are

W u(x ,F) :=
⋃

n≥1Fn(x);

W s(x ,F) :=
⋃

n≥1F−n(x).

The stable and unstable manifolds of a critical component P
are defined by

W u(P,F) :=
⋃

x∈P W u(x);
W s(P,F) :=

⋃
x∈P W s(x).
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Proposition

If p and q are pixels such that W u(p) ∩W s(q) 6= ∅, then there
exists a trajectory from p to q.

T. Kaczynski Multivalued Discrete Dynamical System, Part I



Part I: Mathematical model

Why discrete model?
Background from the classical Morse theory
Critical components
Dynamical systems
Stable, unstable manifolds, and Morse connections graph

Proposition

If p and q are pixels such that W u(p) ∩W s(q) 6= ∅, then there
exists a trajectory from p to q.

Corollary
Le P and Q be critical components such that
W u(P) ∩W s(Q) 6= ∅. Then there exists a trajectory connecting
P to Q, in the sense, that it connects a point in P to a point in Q.
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Definition

Let P and Q be two critical components of f : X → R. There is
an upward connection from P to Q, denoted P ↗ Q, if

W u (P,F+) ∩W s (Q,F+) 6= ∅;

a downward connection from P to Q, denoted P ↘ Q, if

W u (P,F−) ∩W s (Q,F−) 6= ∅.
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Covering property

Theorem

Let {P1, . . . ; Pk} be the set of all critical components of
f : X → R. Then

k⋃
i=1

W s(Pi ,F+) = X =
k⋃

i=1

W s(Pi ,F−).
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Morse Connection Graph

Definition

The Morse Connections Graph MCGf = (Vf , Ef ) is a graph
whose nodes Vf and edges Ef are defined as follows:

Vf = {critical components of f} ;

Ef =
{(

Pi , Pj
)
∈ Vf × Vf | Pi ↗ Pj or Pi ↘ Pj

}
Equivalently,

(
Pi , Pj

)
is an edge of the graph if

W u(Pi ,F+)∩W s(Pj ,F+) 6= ∅ or W u(Pi ,F−)∩W s(Pj ,F−) 6= ∅.
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