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Classical Morse Theory

Let M be a smooth manifold and f : M — R a smooth function.

@ f Morse function < all of its critical points are non
degenerate.

T. Kaczynski Multivalued Discrete Dynamical System, Part |



Why discrete model?
Background from the classical Morse theory
Part I: Mathematical model Critical components
Dynamical systems
Stable, unstable manifolds, and Morse connections graph

Classical Morse Theory

Let M be a smooth manifold and f : M — R a smooth function.

@ f Morse function < all of its critical points are non
degenerate.

@ The index A\(p) is the number of negative eigenvalues of
the determinant of the Hessian H(p).

A(p) = dimW?*(p) = dim {q eM| lim o(t,q) = p} :

T. Kaczynski Multivalued Discrete Dynamical System, Part |



Why discrete model?
Background from the classical Morse theory
Part I: Mathematical model Critical components
Dynamical systems
Stable, unstable manifolds, and Morse connections graph

Classical Morse Theory

Let M be a smooth manifold and f : M — R a smooth function.

@ f Morse function < all of its critical points are non
degenerate.

@ The index A(p) is the number of negative eigenvalues of
the determinant of the Hessian H(p).

A(p) = dimW*(p) =dim {qg € M| lim ¢(t,q) = p},

@ WHp)={qe M| limn_._¢(t,q)=p},
dimWY(p) = dim(M) — A(p).
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Covering properties

@ Forp+#q:
W (p) n W¥(q) =0 and W*(p)n W*®(q) =0. (1)
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Covering properties

@ Forp#q:
WY (p) N W (q) =0 and W°(p) n W°(q) =0. (1)

@ If {p1, ..., px} represents the set of all critical points of a f:
k
L W (p;) = M and (2)
i=1
k

_U WY (pi) = M (3)
i=1 6
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Smooth Morse Connection Graph

Definition

The smooth Morse Connections Graph is a graph whose nodes
V are critical points of f and edges E are defined as follows:

E ={(p,q) € V x V | Ftrajectory connecting p to q}

Equivalently, (p, q) is an edge of the graph if

W¥(p) N W*(q) # 0 or W¥(q) n W*(p) # 0.
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The values of f are only known on a set of pixels, denoted by
X. Thus, f: X — R is a discrete function.

We interpret pixels x € X as unit squares of the form

x = [k, k+1] x [I,1+ 1], k, | integers, for a chosen grid scale.
Given any A C X the support of A is the set |A| € R? given by

A=JA

Thus the association A — |A| provides the passage from
combinatorics to geometry.
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Definition

Two pixels x and y in X are
@ 0-connected, denoted by x0y, if 3 a sequence
X1 = X, X2, ...Xp = y such that x; N x; 1 contains a vertex
for all /,

This relation is an equivalence relation and the
1-connectedness implies the 0-connectedness.

Xy
z t
Figure: x1y, x1z, y1t, z1t, x0t, y0z. 6
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Definition

Two pixels x and y in X are
@ 0-connected, denoted by x0y, if 3 a sequence
X1 = X, X2, ...Xp =y such that x; N x; 4 contains a vertex
for all /,
@ 1-connected, denoted by x1y, if 3 a sequence
X1 = X, X2, ...Xn = y such that x; N x; 1 contains an edge.
This relation is an equivalence relation and the
1-connectedness implies the 0-connectedness.

Xy
z t
Figure: x1y, x1z, y1t, z1t, x0t, y0z. 6
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Definition
A component X" is a maximal set of 0-connected pixels with the
same value of f.
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Figure: Pixels with the 0 value form a component.
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Definition

The distance between two adjacents pixels x,y € X is

_ [ V2 ifxnyisavertex,
dist(x,y) = { 1 if xNyisanedge.
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Definition

The distance between two adjacents pixels x,y € X is

_ [ V2 ifxnyisavertex,
dist(x,y) = { 1 if xNyisanedge.

Definition

The directional derivative of f at x in the direction of y is

of _ fly) —f(x)
s

f
By convention, we define S—X(x) =0.

N
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wrap (x) = {y € bd(x) g;(x) > o},
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wrap (x) = {y € bd(x) g;(x) > o},

If Ais subset of X:
wrap (A) :={y € bd(A) | f(y) > f(x) forall x e Anbd(y)},
wrap (A) == {y € bd(A) | f(y) < f(x) forallx € An bd(y)} .
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Definition

Given a function f : X — R, a component X C X is called a

maximum < 8—(x) <0, Vx e X,Vy € bd(x) N bd(X)
— f(y) < f(x), Vxe X,Vy € bd(x) N bd(X)

minimum < g(x >0, Vx € X,Vy € bd(x) N bd(X)
<~ f(y) > f(x), Vx e X,Vy € bd(x) N bd(X).
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2 0 4 0
2 1 3 4
0 4 0 4

Figure: Adjacent center pixels with values 1 and 3 are both saddles
and they form a component which is not a level set of f but it has a
property of a 4-saddle.

Definition

A k-saddle component is a maximal connected set of saddle
pixels such that wrap (X') # () and its support is 1-disconnected
with (k 4+ 1) 1-connected components, k > 1. 6
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Definition
A set X is a critical component if it is either a minimum,
maximum or a k-saddle.
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@ Amap F : X x Z= X is called a discrete multivalued
dynamical system (dmds) on X if:
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@ Amap F : X x Z= X is called a discrete multivalued

dynamical system (dmds) on X if:
@ Forall x € X, F(x,0) = {x} ;
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Definition

@ Amap F : X x Z= X is called a discrete multivalued
dynamical system (dmds) on X if:
@ Forall x € X, F(x,0) = {x} ;
@ Forall n,m e Z with nm > 0 and all x € X,
F(F(x,n),m) = F(x,n+ m).
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Definition
@ Amap F : X x Z= X is called a discrete multivalued
dynamical system (dmds) on X if:
@ Forall x € X, F(x,0) = {x} ;
@ Forall n,m e Z with nm > 0 and all x € X,
F(F(x,n),m) = F(x,n+ m).
@ Amap F : X x N= X is called a discrete multivalued
semidynamical system (dmss) if (1) holds, and if (2) is
satisfied for all n, m € N.
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We propose several experimental approaches to defining a
dynamics of a function f : X — R on a set of pixels X. For
abbreviation, given x € X, let

max = max 8—f(x) and min= min —(x)
B yewrap(x) ay N yewrap(x) Oy ’
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of
Exact Fi(x) = {y € wrap(x) | a—y(x) = max} :
steepest o
trajectory F_(x) = {y € wrap(x) | 87()() = min}.

Admissible
error bound

approach {

of
y € wrap(x) | —y(x) € [(1 — e)max, max]}

y € wrap(x g;(x) € [min, (1 — e)min]} .

of
L(x € wra —(x)>0,,
‘Permissive’ ()= {y PO | 3}’( )= }

approach of
= = < .
(0= {yewat)| JL0<0). g
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Definition

Let F : X = X be a generator of a dmss. The stable and
unstable manifolds of a point x € X relatively to F are

WO, F) = Upsq F7(X);
WS(x, F) = Upsq F ().
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Definition

Let 7 : X = X be a generator of a dmss. The stable and
unstable manifolds of a point x € X relatively to F are

WH(x, F) = Ups1 F(x);
WS(x,F) = Uns1 F1(x).

The stable and unstable manifolds of a critical component P
are defined by

WEP, F) = Uxep WH(X);
WE(P, F) = Uxep W2(x).
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Proposition

If p and g are pixels such that WY (p) N W5(q) # 0, then there
exists a trajectory from p to q.
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Proposition

If p and g are pixels such that WY(p) N W5(q) # 0, then there
exists a trajectory from p to q.

Corollary

Le P and Q be critical components such that
WHY(P)n W*(Q) # 0. Then there exists a trajectory connecting
P to Q, in the sense, that it connects a point in P to a point in Q.
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Definition

Let P and Q be two critical components of f : X — R. There is
@ an upward connection from P to Q, denoted P " Q, if

WY (P, F+)n W (Q,Fy) # 0;
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Definition

Let P and Q be two critical components of f : X — R. There is
@ an upward connection from P to Q, denoted P " Q, if

WY (P, F+)n W3(Q, Fy) # 0;
@ a downward connection from P to Q, denoted P\, Q, if

WY (P, F_) N WS(Q,F_) 0.
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Covering property

Let{Py,...; P} be the set of all critical components of
f: X —R. Then

k k

U wep, 7)) =Xx=Jws(P, F.).

i=1 i=1
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Morse Connection Graph

Definition

The Morse Connections Graph MCGy = ( V4, E¢) is a graph
whose nodes V; and edges E; are defined as follows:

V; = {critical components of f};

Ef :{(P/,Pj)E Vf>< Vf | P,/IDIOFP,\R/}

Equivalently, (P;, Pj) is an edge of the graph if

WP F2) N W3(R, ) ) or WY(P, ) 1 WE(R, F-) # 0.
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