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N-body Problem

Z m;(q; — q:)

qi =
2 i — 4]

where ¢; € R".



N-body Problem

G, = Z mj(CIj — Qi)

oy ||q@ — Qj||3

where ¢; € R".

We assume that:

omizl

e n=2 = q; = (z5,%), 4 = pi = (&, V)
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Famous eight shaped periodic orbit - The Eight



Choreographies of eight bodies
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Proofs of existence of choreographies using variational methods:

e Chenciner and Montgomery - The Eight,

e Ferrario, Terracini - "rotating circle” property of symmetry

group,

In general: They state that in some class of
symmetric paths there exists choreography.

How to use numerical data of the
choreography to give a rigorous computer
assisted proof of its existence?



We are searching for 1’ periodic curve:
g: R — R?
such that

e qi(t) = q(t + (k — 1)%) is the position of k-th body,
k=12 .. .. N

o (qi(t),q2(t),...,qn(t)) is solution of the N-body problem.



L = (q17p17 q2, P2, ..., qupN) - pOint in the phase space

p(x,t) - flow defined by N-body equation

o(x) shift of particles g1 — g2 — -+ — gy — @1
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L = (q17p17 q2, P2, ..., qupN) - pOint in the phase space
p(x,t) - flow defined by N-body equation

o(x) shift of particles g1 — g2 — -+ — gy — @1

F(x¢) = 0 < x¢ initial condition for
choreography.



Interval Krawczyk method

We assume that:

F:R" — R"is a C! function,
X C R" is an interval set,

X
R Xn

xr €
C e

is a linear isomorphism.



Interval Krawczyk method

We assume that:

F:R" — R"is a C! function,
X C R" is an interval set,

zeX

C € R"™ " is a linear isomorphism.

The Krawczyk operator is given by

K(%, X,F) := %X — CF(X) + (Id — C[DF(X)])(X — %).



Interval Krawczyk method

We assume that:

F:R" — R"is a C! function,
X C R" is an interval set,

zeX

C € R"™ " is a linear isomorphism.

The Krawczyk operator is given by

K(%, X,F) := %X — CF(X) + (Id — C[DF(X)])(X — %).

If x € X and F(z) =0, then x € K(z, X, F).



Interval Krawczyk method

We assume that:

F:R" — R"is a C" function,
X C R" is an interval set,

x e X

C € R"™ " is a linear isomorphism.

The Krawczyk operator is given by

K(%, X,F) := %X — CF(X) + (Id — C[DF(X)])(X — %).

If x € X and F(z) =0, then x € K(z, X, F).

If K(z, X, F) C intX, then 3!z" € X such that F'(z™) = 0.



Interval Krawczyk method

We assume that:

F:R" — R"is a C" function,
X C R" is an interval set,

x e X

C € R"™ " is a linear isomorphism.

The Krawczyk operator is given by

K(%, X,F) := %X — CF(X) + (Id — C[DF(X)])(X — %).

If x € X and F(z) =0, then x € K(z, X, F).
If K(z, X, F) C intX, then 3!z" € X such that F'(z™) = 0.

If K(z, X, F)NX =0, then Fi(z) # 0 forall x € X
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To use Krawczyk method we need local uniqueness.

FIRST INTEGRALS — Zeroes of F' are never isolated

— We reduce phase space dimension

Reduction due to the center of mass condition.

2

\

(g — @)
g = Z — fori =1,2,...
] qi — g5
Jg=1
J# 1

N—-1
where gqv = — > @i,  pn=— ) Di
=1 )
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We assume that at time ¢t = O the first body is on the X axis

with the velocity orthogonal to that axis

X = (Q1ap1>CI2>p2a--->CIN—1,Z9N—1)
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= (z,0)

So at time ¢ = 0 we have ¢ = ¢y = (0, 0).



We assume that at time ¢t = O the first body is on the X axis

with the velocity orthogonal to that axis

X = (Q1ap1>CI2>p2a--->CIN—1,Z9N—1)
— (X17y17k17y17q27p27---an—lapN—l)
= (z,0)

So at time ¢ = 0 we have ¢ = ¢y = (0, 0).

Projections:

m.(2,c) = 2 m.(z,c) = c.



@(x,t) a flow generated by the reduced system

_ N-—1 N—1
0'(33) — (_Zizl Qz‘7_Z¢:1 piaqlap17°'°an—27pN—2)
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@(x,t) a flow generated by the reduced system

_ N—1 N—1
0(37) — (—Zizl Qi,—zizl pi7Q1apla---aQN—27pN—2)
G(x) =500 T)
X) =00 X, —
PN

F(z) = m,G(z,¢co) — 2z

Function of the first integrals

= |Ipill’ 1 -
J(x) = Z 5 Z Z di X Pi
i—1

’
1<i<j<N ||ql T qJH i=1




Theorem 1. Let Z and C be two interval sets such that
20 € Z, [7(G(Z,¢0))] C C and ¢y € C. If K(z9, Z, F) C
int Z and an interval matrix [3£(Z, C)] is invertible, then

there exists a zero of the map F'.
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Theorem 1. Let Z and C be two interval sets such that
20 € Z, [7(G(Z,¢0))] C C and ¢y € C. If K(z9, Z, F) C
int Z and an interval matrix [$2(Z, C)] is invertible, then

there exists a zero of the map F'.

Sketch of the proof:
K(z0,Z,F) CintZ = 32" : F(2*) =0
== G(Z*, Co) = (Z*, Cl)

J(z%,¢co) =J(Gog ((z*,co),%)) = J(z%, ¢c1)

[%(Z, C)} is invertible =—> for any fixed z € Z a function

J(z,-) is injective on set C.

cop,c1 € C = cop = 1



Theorem 2. Nonsymmetric choreography with 7 bodies

exists.



Initial values

Z Z + [-2e-8, 2e-8]"

Parameters of computations

F(2) time step : 0.0009, order of Taylor method : 13
F(Z) time step : 0.000075, order of Taylor method : 7

Results of computations

max diam K(z, Z, F') | 7.086732423111641e-009

det (g—{(z, C)) [1.67791,1.67791]

A~

Computation time F(2): 13.3 min., F(Z): 69 min.
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Initial values

'\

(1.07614373351, 0.46826621840,  —0.53807186675,
—0.34370682775, —1.09960375207, —0.23413310920)

Z + [-1e-8, 1e-8]°

K(z

diam K (z, Z, F)

det(

0J(Z,C)
dc

, Z, F)

)

(1.076143732%,  0.46826621%%,  —0.5380718630,
—0.343706825%  —1.0996037550:,  —0.23413311%)

(2.23e-9, 1.02e-9, 5.93e-9, 1.28e-9, 3.10e-9, 1.46e-8)

0.45547;




Using symmetry of the orbit to reduce
computational cost.

Symmetry of the orbit is not only symmetry of a curve, but
also involve time.

Symmetries of the Eight
Ay

¥ <

a(t+ ) = Sya(y) ()

a1+ 3) = Saa(t). @)



Expansion from the reduced space to the full space

Ay

\ A

Rotated Eight - initial position

FE(v,u) =(1,0,—1,0,0,0,v, u, v, u, —2v, —2u).

Poincaré map P : R!? DN — R!'? defined by section

q1-q1 =0



Reduction from full space to the reduced space

Ay
/02

\ A

S

Rotated Eight - final position

R(q1, 92,93, d1, 42, 43) =
(lgz — a1ll” = llgzs — a1ll?s (g2 — d3) X q1),

b= RoPokF.

There exists a locally unique (v, u) € R? that ®(v, u) = (0, 0).



CONCLUSION:

e Algorithm gives general method for rigorous verification of

choreography simulations

e ’'brutal force’ method not always gives results (e.g.
increasing the order of the Taylor method can worsen

the estimates)

e we need better algorithm for rigorous integration of ODE

and methods of the interval sets representation

e multiple precision for intervals bounds can improve estimates

and can make methods work for many orbits.



