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where qi ∈ Rn.

We assume that:

• mi = 1

• n = 2 =⇒ qi = (xi, yi), q̇i = pi = (ẋi, ẏi)
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Famous eight shaped periodic orbit - The Eight



Choreographies of eight bodies
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Proofs of existence of choreographies using variational methods:

• Chenciner and Montgomery - The Eight,

• Ferrario, Terracini - ”rotating circle” property of symmetry

group,

In general: They state that in some class of
symmetric paths there exists choreography.

How to use numerical data of the
choreography to give a rigorous computer
assisted proof of its existence?



We are searching for T periodic curve:

q : R −→ R2

such that

• qk(t) = q(t + (k − 1)T
N ) is the position of k-th body,

k = 1, 2, . . . , N

• (q1(t), q2(t), . . . , qN(t)) is solution of the N-body problem.



x = (q1, p1, q2, p2, . . . , qN , pN) - point in the phase space

ϕ(x, t) - flow defined by N-body equation

σ(x) shift of particles q1 → q2 → · · · → qN → q1



x = (q1, p1, q2, p2, . . . , qN , pN) - point in the phase space

ϕ(x, t) - flow defined by N-body equation

σ(x) shift of particles q1 → q2 → · · · → qN → q1

F(x) = σϕ

(
x,

T
N

)
− x



x = (q1, p1, q2, p2, . . . , qN , pN) - point in the phase space

ϕ(x, t) - flow defined by N-body equation

σ(x) shift of particles q1 → q2 → · · · → qN → q1

F(x) = σϕ

(
x,

T
N

)
− x

F(x0) = 0⇔ x0 initial condition for
choreography.
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Interval Krawczyk method

We assume that:
F : Rn −→ Rn is a C1 function,
X ⊂ Rn is an interval set,
x̄ ∈ X
C ∈ Rn×n is a linear isomorphism.

The Krawczyk operator is given by

K(x̄, X, F) := x̄− CF(x̄) + (Id− C[DF(X)])(X− x̄).

If x ∈ X and F (x) = 0, then x ∈ K(x̄, X, F ).

If K(x̄, X, F ) ⊂ intX, then ∃!x∗ ∈ X such that F (x∗) = 0.

If K(x̄, X, F ) ∩X = ∅, then F (x) 6= 0 for all x ∈ X
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To use Krawczyk method we need local uniqueness.

FIRST INTEGRALS =⇒ Zeroes of F are never isolated

=⇒ We reduce phase space dimension

Reduction due to the center of mass condition.

q̈i =
N∑

j = 1

j 6= i

(qj − qi)

qi − qj
3

for i = 1, 2, . . . , N − 1,

where qN = −
N−1∑
i=1

qi, pN = −
N−1∑
i=1

pi.
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We assume that at time t = 0 the first body is on the X axis

with the velocity orthogonal to that axis

x = (q1, p1, q2, p2, . . . , qN−1, pN−1)

= (x1, y1, ẋ1, ẏ1, q2, p2, . . . , qN−1, pN−1)

= (z, c)

So at time t = 0 we have c = c0 = (0, 0).

Projections:

πz(z, c) = z πc(z, c) = c.
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ϕ̄(x, t) a flow generated by the reduced system

σ̄(x) =
(
−

∑N−1
i=1 qi,−

∑N−1
i=1 pi, q1, p1, . . . , qN−2, pN−2

)

Ḡ(x) = σ̄ ◦ ϕ̄

(
x,

T
N

)

F̂(z) = πzḠ(z, c0)− z

Function of the first integrals

J(x) =

 N∑
i=1

‖pi‖2

2
−

∑
1≤i<j≤N

1
‖qi − qj‖

,
N∑

i=1

qi × pi





Theorem 1. Let Z and C be two interval sets such that
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there exists a zero of the map F .
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=⇒ Ḡ(z∗, c0) = (z∗, c1)



Theorem 1. Let Z and C be two interval sets such that
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Theorem 1. Let Z and C be two interval sets such that

z0 ∈ Z, [πc(Ḡ(Z, c0))] ⊂ C and c0 ∈ C. If K(z0, Z, F̂ ) ⊂
int Z and an interval matrix

[
∂J
∂c (Z, C)

]
is invertible, then

there exists a zero of the map F .

Sketch of the proof:

K(z0, Z, F̂ ) ⊂ int Z =⇒ ∃z∗ : F̂ (z∗) = 0

=⇒ Ḡ(z∗, c0) = (z∗, c1)

J(z∗, c0) = J(σ̄ ◦ ϕ̄
(
(z∗, c0),

T
N

)
) = J(z∗, c1)

[
∂J
∂c (Z, C)

]
is invertible =⇒ for any fixed z ∈ Z a function

J(z, ·) is injective on set C.

c0, c1 ∈ C =⇒ c0 = c1



Theorem 2. Nonsymmetric choreography with 7 bodies

exists.



Initial values

Z z̄ + [-2e-8, 2e-8]70

Parameters of computations

F̂ (z̄) time step : 0.0009, order of Taylor method : 13

F̂ (Z) time step : 0.000075, order of Taylor method : 7

Results of computations

max diam K(z̄, Z, F̂ ) 7.086732423111641e-009

det
(

∂Ĵ
∂c (Z, C)

)
[1.67791,1.67791]

Computation time F̂ (z̄): 13.3 min., F̂ (Z): 69 min.
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Initial values

z̄
(1.07614373351, 0.46826621840, −0.53807186675,
−0.34370682775, −1.09960375207, −0.23413310920)

Z z̄ + [-1e-8, 1e-8]6

K(z̄, Z, F̂ )
(1.07614373223

447, 0.46826621793
895, −0.53807186965

370,

−0.34370682835
706, −1.09960375371

060, −0.2341331166
019)

diam K(z̄, Z, F̂ ) (2.23e-9, 1.02e-9, 5.93e-9, 1.28e-9, 3.10e-9, 1.46e-8)

det(∂J(Z,C)
∂c ) 0.455472

99



Using symmetry of the orbit to reduce
computational cost.
Symmetry of the orbit is not only symmetry of a curve, but

also involve time.

Symmetries of the Eight
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q(t +
T

2
) = Syq(y) (1)

q(−t +
T

2
) = Sxq(t). (2)



Expansion from the reduced space to the full space

x

y

12 3

Rotated Eight - initial position

E(v, u) = (1, 0,−1, 0, 0, 0, v, u, v, u,−2v,−2u).

Poincaré map P : R12 ⊃ Ω −→ R12
defined by section

q1 · q̇1 = 0



Reduction from full space to the reduced space
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Rotated Eight - final position

R(q1, q2, q3, q̇1, q̇2, q̇3) =

(‖q2 − q1‖2 − ‖q3 − q1‖2, (q̇2 − q̇3)× q1),

Φ = R ◦ P ◦ E.

There exists a locally unique (v, u) ∈ R2 that Φ(v, u) = (0, 0).



CONCLUSION:

• Algorithm gives general method for rigorous verification of

choreography simulations

• ’brutal force’ method not always gives results (e.g.

increasing the order of the Taylor method can worsen

the estimates)

• we need better algorithm for rigorous integration of ODE

and methods of the interval sets representation

• multiple precision for intervals bounds can improve estimates

and can make methods work for many orbits.


