Tomasz Kapela

Computer assisted proofs of choreographies existence

Bedlewo, 4-10 June 2006

N-body Problem

$$\ddot{q}_i = \sum_{j \neq i} \frac{m_j (q_j - q_i)}{\|q_i - q_j\|^3}$$

where $q_i \in \mathbf{R}^n$.

N-body Problem

$$\ddot{q_i} = \sum_{j \neq i} \frac{m_j (q_j - q_i)}{\|q_i - q_j\|^3}$$

where $q_i \in \mathbf{R}^n$.

We assume that:

- $m_i = 1$
- $n = 2 \implies q_i = (x_i, y_i), \ \dot{q}_i = p_i = (\dot{x}_i, \dot{y}_i)$

By a *simple choreography* we mean a collision-free solution of the N-body problem in which all masses move on the same curve with a constant phase shift.

By a *simple choreography* we mean a collision-free solution of the N-body problem in which all masses move on the same curve with a constant phase shift.

Famous eight shaped periodic orbit - The Eight

Choreographies of eight bodies

7 bodies - no symmetry

9 bodies - no symmetry

9 bodies - no symmetry

Proofs of existence of choreographies using variational methods:

- Chenciner and Montgomery The Eight,
- Ferrario, Terracini "rotating circle" property of symmetry group,

Proofs of existence of choreographies using variational methods:

- Chenciner and Montgomery The Eight,
- Ferrario, Terracini "rotating circle" property of symmetry group,

In general: They state that in some class of symmetric paths there exists choreography.

Proofs of existence of choreographies using variational methods:

- Chenciner and Montgomery The Eight,
- Ferrario, Terracini "rotating circle" property of symmetry group,

In general: They state that in some class of symmetric paths there exists choreography.

How to use numerical data of the choreography to give a rigorous computer assisted proof of its existence?

We are searching for T periodic curve:

 $q: \mathbf{R} \longrightarrow \mathbf{R}^2$

such that

- ullet $q_k(t)=q(t+(k-1)rac{T}{N})$ is the position of k-th body, $k=1,2,\ldots,N$
- $(q_1(t), q_2(t), \ldots, q_N(t))$ is solution of the N-body problem.

 $x=(q_1,p_1,q_2,p_2,\ldots,q_N,p_N)$ - point in the phase space

arphi(x,t) - flow defined by $N ext{-body}$ equation

 $\sigma(x)$ shift of particles $q_1 \to q_2 \to \cdots \to q_N \to q_1$

 $x=(q_1,p_1,q_2,p_2,\ldots,q_N,p_N)$ - point in the phase space

arphi(x,t) - flow defined by $N ext{-body}$ equation

 $\sigma(x)$ shift of particles $q_1 \to q_2 \to \cdots \to q_N \to q_1$

$$\mathbf{F}(\mathbf{x}) = \sigma \varphi \left(\mathbf{x}, \frac{\mathbf{T}}{\mathbf{N}} \right) - \mathbf{x}$$

 $x=(q_1,p_1,q_2,p_2,\ldots,q_N,p_N)$ - point in the phase space

arphi(x,t) - flow defined by $N ext{-body}$ equation

 $\sigma(x)$ shift of particles $q_1 \to q_2 \to \cdots \to q_N \to q_1$

$$\mathbf{F}(\mathbf{x}) = \sigma \varphi \left(\mathbf{x}, \frac{\mathbf{T}}{\mathbf{N}} \right) - \mathbf{x}$$

 $\mathbf{F}(\mathbf{x_0}) = \mathbf{0} \Leftrightarrow \mathbf{x_0}$ initial condition for choreography.

We assume that: $F: \mathbf{R}^n \longrightarrow \mathbf{R}^n \text{ is a } C^1 \text{ function,} \\ X \subset \mathbf{R}^n \text{ is an interval set,} \\ \bar{x} \in X \\ C \in \mathbf{R}^{n \times n} \text{ is a linear isomorphism.}$

We assume that: $F: \mathbf{R}^n \longrightarrow \mathbf{R}^n$ is a C^1 function, $X \subset \mathbf{R}^n$ is an interval set, $\bar{x} \in X$ $C \in \mathbf{R}^{n \times n}$ is a linear isomorphism.

The Krawczyk operator is given by

$$\mathbf{K}(\bar{\mathbf{x}}, \mathbf{X}, \mathbf{F}) := \bar{\mathbf{x}} - \mathbf{CF}(\bar{\mathbf{x}}) + (\mathbf{Id} - \mathbf{C}[\mathbf{DF}(\mathbf{X})])(\mathbf{X} - \bar{\mathbf{x}}).$$

We assume that:

 $F: \mathbf{R}^n \longrightarrow \mathbf{R}^n$ is a C^1 function, $X \subset \mathbf{R}^n$ is an interval set, $\bar{x} \in X$ $C \in \mathbf{R}^{n \times n}$ is a linear isomorphism.

The Krawczyk operator is given by

$$\mathbf{K}(\bar{\mathbf{x}}, \mathbf{X}, \mathbf{F}) := \bar{\mathbf{x}} - \mathbf{CF}(\bar{\mathbf{x}}) + (\mathbf{Id} - \mathbf{C}[\mathbf{DF}(\mathbf{X})])(\mathbf{X} - \bar{\mathbf{x}}).$$

If $x \in X$ and F(x) = 0, then $x \in K(\bar{x}, X, F)$.

We assume that: $F: \mathbf{R}^n \longrightarrow \mathbf{R}^n$ is a C^1 function, $X \subset \mathbf{R}^n$ is an interval set,

 $\bar{x} \in X$

 $C \in \mathbf{R}^{n \times n}$ is a linear isomorphism.

The Krawczyk operator is given by

$$\mathbf{K}(\bar{\mathbf{x}}, \mathbf{X}, \mathbf{F}) := \bar{\mathbf{x}} - \mathbf{CF}(\bar{\mathbf{x}}) + (\mathbf{Id} - \mathbf{C}[\mathbf{DF}(\mathbf{X})])(\mathbf{X} - \bar{\mathbf{x}}).$$

If $x \in X$ and F(x) = 0, then $x \in K(\bar{x}, X, F)$.

If $K(\bar{x}, X, F) \subset intX$, then $\exists ! x^* \in X$ such that $F(x^*) = 0$.

We assume that: $F: \mathbf{R}^n \longrightarrow \mathbf{R}^n$ is a C^1 function, $X \subset \mathbf{R}^n$ is an interval set, $\bar{x} \in X$ $C \in \mathbf{R}^{n \times n}$ is a linear isomorphism.

The Krawczyk operator is given by

$$\mathbf{K}(\bar{\mathbf{x}}, \mathbf{X}, \mathbf{F}) := \bar{\mathbf{x}} - \mathbf{CF}(\bar{\mathbf{x}}) + (\mathbf{Id} - \mathbf{C}[\mathbf{DF}(\mathbf{X})])(\mathbf{X} - \bar{\mathbf{x}}).$$

If $x \in X$ and F(x) = 0, then $x \in K(\bar{x}, X, F)$.

If $K(\bar{x}, X, F) \subset intX$, then $\exists !x^* \in X$ such that $F(x^*) = 0$.

If $K(\bar{x}, X, F) \cap X = \emptyset$, then $F(x) \neq 0$ for all $x \in X$

FIRST INTEGRALS \Longrightarrow Zeroes of F are never isolated

FIRST INTEGRALS \Longrightarrow **Zeroes** of F are never isolated

⇒ We reduce phase space dimension

FIRST INTEGRALS \Longrightarrow Zeroes of F are never isolated \Longrightarrow We reduce phase space dimension

Reduction due to the center of mass condition.

$$\left\{ \begin{array}{ll} \ddot{q}_i = \sum_{j=1}^N \frac{(q_j - q_i)}{q_i - q_j^3} & \text{for } i = 1, 2, \dots, N-1, \\ j = 1 & \\ j \neq i & \\ \text{where } q_N = -\sum_{i=1}^{N-1} q_i, & p_N = -\sum_{i=1}^{N-1} p_i. \end{array} \right.$$

$$\mathbf{x} = (q_1, p_1, q_2, p_2, \dots, q_{N-1}, p_{N-1})$$

$$\mathbf{x} = (q_1, p_1, q_2, p_2, \dots, q_{N-1}, p_{N-1})$$
$$= (\mathbf{x}_1, \mathbf{y}_1, \mathbf{\dot{x}}_1, \mathbf{\dot{y}}_1, \mathbf{q}_2, \mathbf{p}_2, \dots, \mathbf{q}_{N-1}, \mathbf{p}_{N-1})$$

$$\mathbf{x} = (q_1, p_1, q_2, p_2, \dots, q_{N-1}, p_{N-1})$$

$$= (\mathbf{x}_1, \mathbf{y}_1, \dot{\mathbf{x}}_1, \dot{\mathbf{y}}_1, \mathbf{q}_2, \mathbf{p}_2, \dots, \mathbf{q}_{N-1}, \mathbf{p}_{N-1})$$

$$= (\mathbf{z}, \mathbf{c})$$

$$\mathbf{x} = (q_1, p_1, q_2, p_2, \dots, q_{N-1}, p_{N-1})$$

$$= (\mathbf{x}_1, \mathbf{y}_1, \dot{\mathbf{x}}_1, \dot{\mathbf{y}}_1, \mathbf{q}_2, \mathbf{p}_2, \dots, \mathbf{q}_{N-1}, \mathbf{p}_{N-1})$$

$$= (\mathbf{z}, \mathbf{c})$$

So at time t = 0 we have $c = c_0 = (0, 0)$.

$$\mathbf{x} = (q_1, p_1, q_2, p_2, \dots, q_{N-1}, p_{N-1})$$

$$= (\mathbf{x}_1, \mathbf{y}_1, \dot{\mathbf{x}}_1, \dot{\mathbf{y}}_1, \mathbf{q}_2, \mathbf{p}_2, \dots, \mathbf{q}_{N-1}, \mathbf{p}_{N-1})$$

$$= (\mathbf{z}, \mathbf{c})$$

So at time t = 0 we have $c = c_0 = (0, 0)$.

Projections:

$$\pi_z(z,c) = z$$
 $\pi_c(z,c) = c.$

 $\bar{\varphi}(x,t)$ a flow generated by the reduced system

$$ar{\sigma}(x) = \left(-\sum_{i=1}^{N-1} q_i, -\sum_{i=1}^{N-1} p_i, q_1, p_1, \dots, q_{N-2}, p_{N-2}\right)$$

$\bar{\varphi}(x,t)$ a flow generated by the reduced system

$$ar{\sigma}(x) = \left(-\sum_{i=1}^{N-1} q_i, -\sum_{i=1}^{N-1} p_i, q_1, p_1, \dots, q_{N-2}, p_{N-2}
ight)$$

$$ar{\mathbf{G}}(\mathbf{x}) = ar{\sigma} \circ ar{arphi}\left(\mathbf{x}, rac{\mathbf{T}}{\mathbf{N}}
ight)$$

$$\hat{\mathbf{F}}(\mathbf{z}) = \pi_{\mathbf{z}} \bar{\mathbf{G}}(\mathbf{z}, \mathbf{c}_0) - \mathbf{z}$$

$ar{arphi}(x,t)$ a flow generated by the reduced system

$$\bar{\sigma}(x) = \left(-\sum_{i=1}^{N-1} q_i, -\sum_{i=1}^{N-1} p_i, q_1, p_1, \dots, q_{N-2}, p_{N-2}\right)$$

$$ar{\mathbf{G}}(\mathbf{x}) = ar{\sigma} \circ ar{arphi}\left(\mathbf{x}, rac{\mathbf{T}}{\mathbf{N}}
ight)$$

$$\hat{\mathbf{F}}(\mathbf{z}) = \pi_{\mathbf{z}} \bar{\mathbf{G}}(\mathbf{z}, \mathbf{c}_0) - \mathbf{z}$$

Function of the first integrals

$$\mathbf{J}(\mathbf{x}) \quad = \quad \left(\sum_{i=1}^{N} \frac{\|\mathbf{p}_i\|^2}{2} - \sum_{1 \leq i < j \leq N} \frac{1}{\|\mathbf{q}_i - \mathbf{q}_j\|}, \quad \sum_{i=1}^{N} \mathbf{q}_i \times \mathbf{p}_i\right)$$

Sketch of the proof:

$$K(z_0, Z, \hat{F}) \subset \operatorname{int} Z \Longrightarrow \exists z^* : \hat{F}(z^*) = 0$$

 $\Longrightarrow \bar{G}(z^*, c_0) = (z^*, c_1)$

Sketch of the proof:

$$K(z_0, Z, \hat{F}) \subset \operatorname{int} Z \Longrightarrow \exists z^* : \hat{F}(z^*) = 0$$

 $\Longrightarrow \bar{G}(z^*, c_0) = (z^*, c_1)$

$$J(z^*, c_0) = J(\bar{\sigma} \circ \bar{\varphi} ((z^*, c_0), \frac{T}{N})) = J(z^*, c_1)$$

Sketch of the proof:

$$K(z_0, Z, \hat{F}) \subset \operatorname{int} Z \Longrightarrow \exists z^* : \hat{F}(z^*) = 0$$

 $\Longrightarrow \bar{G}(z^*, c_0) = (z^*, c_1)$

$$J(z^*, c_0) = J(\bar{\sigma} \circ \bar{\varphi}((z^*, c_0), \frac{T}{N})) = J(z^*, c_1)$$

 $\left[rac{\partial J}{\partial c}(Z,C)
ight]$ is invertible \Longrightarrow for any fixed $z\in Z$ a function $J(z,\cdot)$ is injective on set C.

Sketch of the proof:

$$K(z_0, Z, \hat{F}) \subset \operatorname{int} Z \Longrightarrow \exists z^* : \hat{F}(z^*) = 0$$

 $\Longrightarrow \bar{G}(z^*, c_0) = (z^*, c_1)$

$$J(z^*, c_0) = J(\bar{\sigma} \circ \bar{\varphi}((z^*, c_0), \frac{T}{N})) = J(z^*, c_1)$$

 $\left[\frac{\partial J}{\partial c}(Z,C)\right]$ is invertible \Longrightarrow for any fixed $z\in Z$ a function $J(z,\cdot)$ is injective on set C.

$$c_0, c_1 \in C \Longrightarrow c_0 = c_1$$

Theorem 2. Nonsymmetric choreography with 7 bodies exists.

Initial values	
Z	$ar{z} + [ext{-2e-8}, \; ext{2e-8}]^{70}$
Parameters of computations	
$\hat{F}(ar{z}) \ \hat{F}(Z)$	time step: 0.0009, order of Taylor method: 13 time step: 0.000075, order of Taylor method: 7
Results of computations	
$\max \mathrm{diam} K(ar{z}, Z, \hat{F})$ $det \left(rac{\partial \hat{J}}{\partial c}(Z, C) ight)$	7.086732423111641e-009 [1.67791,1.67791]
Computation time	$\hat{F}(ar{z})$: 13.3 min., $\hat{F}(Z)$: 69 min.

Initial values

 $ar{z}$ $(1.07614373351, 0.46826621840, -0.53807186675, -0.34370682775, -1.09960375207, -0.23413310920) <math>ar{z}$ + [-1e-8, 1e-8]⁶

 $K(\bar{z},Z,\hat{F}) = \begin{pmatrix} (1.07614373^{223}_{447}, & 0.46826621^{793}_{895}, & -0.53807186^{965}_{370}, \\ -0.34370682^{835}_{706}, & -1.09960375^{371}_{060}, & -0.2341331^{166}_{019}) \end{pmatrix}$

Using symmetry of the orbit to reduce computational cost.

Symmetry of the orbit is not only symmetry of a curve, but also involve time.

Symmetries of the Eight

$$q(t + \frac{T}{2}) = S_y q(y) \tag{1}$$

$$q(-t + \frac{T}{2}) = S_x q(t). \tag{2}$$

Expansion from the reduced space to the full space

Rotated Eight - initial position

$$E(v, u) = (1, 0, -1, 0, 0, 0, v, u, v, u, -2v, -2u).$$

Poincaré map $P: \mathbf{R}^{12} \supset \Omega \longrightarrow \mathbf{R}^{12}$ defined by section

$$q_1 \cdot \dot{q}_1 = 0$$

Reduction from full space to the reduced space

Rotated Eight - final position

$$R(q_1, q_2, q_3, \dot{q}_1, \dot{q}_2, \dot{q}_3) =$$

$$(\|q_2 - q_1\|^2 - \|q_3 - q_1\|^2, (\dot{q}_2 - \dot{q}_3) \times q_1),$$

$$\Phi = R \circ P \circ E.$$

There exists a locally unique $(v, u) \in \mathbf{R}^2$ that $\Phi(v, u) = (0, 0)$.

CONCLUSION:

- Algorithm gives general method for rigorous verification of choreography simulations
- 'brutal force' method not always gives results (e.g. increasing the order of the Taylor method can worsen the estimates)
- we need better algorithm for rigorous integration of ODE and methods of the interval sets representation
- multiple precision for intervals bounds can improve estimates and can make methods work for many orbits.