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The quadratic/logistic family

Quadratic family Logistic family
fa(x) = x2 − a fλ(x) = λx(1− x)
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Bifurcation diagrams
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Regular dynamics

Definition
f is regular (or periodic) if almost every point
converges to a fixed or periodic orbit.
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Stochastic dynamics

Definition
f is stochastic if the dynamics of almost every point
is described by a probability measure µ which is

invariant
ergodic
absolutely continuous wrt Lebesgue
has a positive Lyapunov exponent:∫

log |f ′|dµ > 0.
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Families of interval maps

Let Ω ⊂ R be an interval and

{fa}a∈Ω

a family of interval maps parametrized by Ω. Let

Ω− = {a : fa is regular }

and
Ω+ = {a : fa is stochastic}
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Genericity results: quadratic family

Let fa(x) = x2 − a and Ω = [afeig, 2].

Theorem (Lyubich ‘02)
Ω− ∪ Ω+ has full measure in Ω.

Theorem (Graczyk-Swiatek, Lyubich ‘97)
Ω− is open and dense in Ω.

Theorem (Jakobson ‘81)
Ω+ has positive measure in Ω.

The actual measures of Ω− and Ω+ are not known.
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Genericity results: smooth families

Let {fa}a∈Ω generic (multimodal) smooth family.

Theorem (Tsuji ‘92, Bruin-L-van Strien ‘03)
Ω+ has positive measure.

Theorem (Koslovsky-Shen-van Strien ‘05)
Ω− is open and dense in Ω.

It is not known if Ω− ∪ Ω+ has full measure.
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Genericity results: non-smooth maps

236 ALVARO ROVELLA 

f: [-1, I] *-% with a graph of the form shown in figure i, with derivative 

> i. In our case, a similar reduction is possible, but it leads to a map 

of the form shown in figure 2, with derivative 0 at z = 0. This is due to 

having A1 + A3 < 0 instead of )q +/~3 > 0. 

j 
Figure 1 

Figure 2 

This kind of maps, associated to contracting Lorenz attractors was 

first discussed by Arneodo, Coullet and Tresser [ACT]. Their interest, 

however, was on the appearance of cascades of bifurcations as a tran- 

sition to chaotic behaviour, and not on the persistence of the attractor 

like in the present paper. 

Property (b) of the theorem follows applying to this map the meth- 

ods of Benedicks and Carleson [BCI], [BC2], suitable modified. 

The open and dense set in property (a), where the vector field ex- 

hibits what can be described as Axiom A dynamics, follows also from 

analyzing this map and exploiting its monotonicity property. 

Bol. Soc. Bras. Mat., VoL 24, N. 2, 1993 
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FIGURE 2. Graph of the circle map f .

point of the interval (e−!/"#,#) and fix two points xk0 < ŷ < ỹ< #, with | f̂ ′(ŷ)| >> 1. Then we

take f to be any smooth map on S1 coinciding with f̂ on [−ŷ, ŷ], coinciding with f̃ on S1\ [−ỹ, ỹ],
and monotone on each interval ±[ŷ, ỹ].
Finally let fµ be the following one-parameter family of circle maps unfolding the dynamics of

f = f0

fµ(z) =

{

f (z)+µ for z ∈ (0,#]
f (z)−µ for z ∈ [−#,0) (1.3)

for µ∈ (−#,#). For z ∈ S1 \ [−#,#] we assume only that
∣

∣

$
$µ
fµ(z)

∣

∣ ≥ 2. In what follows we write
z±k (µ) = fµ(xk) for |k|≥ k0.

Theorem 1.1. [PRV, Theorem A] For a given % ∈ (1,
√
%̃) there exists an integer N such that

taking k0 > N in the construction of f , we can find a small positive constant &̃ such that for

0< &< &̃ there exists a positive Lebesgue measure subset S⊂ (−#,#) satisfying for every µ∈ S

(1) for all n≥ 1 and all k0 ≤ |k|≤ '

(a)

∣

∣

∣

(

f nµ
)′

(z±k (µ))
∣

∣

∣
≥ %n;

(b) either | f nµ( fµ(xl))| > # or | f nµ( fµ(xl))− xm(n)|≥ e−&n;
where xm(n) is the critical point nearest f

n
µ( fµ(xl)).

(2) liminfn→+'n
−1 log |( f nµ)′(z)|≥ log%/3 for Lebesgue almost every point z ∈ S1;

(3) there exists z ∈ S1 whose orbit { f nµ(z) : n≥ 0} is dense in S1.

The statement of Theorem 1.1 is slightly different from the main statement of [PRV] but the

proof is contained therein.

1.2. Existence of absolutely continuous invariant probability measures. The purpose of this

work is to prove that for parameters µ ∈ S the map fµ admits a unique absolutely continuous

invariant probability measure (µ, whose basin covers Lebesgue almost every point of S
1, and to

study some of the main statistical and ergodic properties of these measures.

Theorem
Ω+ has positive measure

Contracting Lorenz: Rovella ‘93, Metzger ‘00

Lorenz-like with singularities: L-Tucker ‘99, L-Viana ‘00, Diaz-Holland-L ‘05

Infinite-modal: Rovella-Pacifico-Viana ‘89, Araujo-Pacifico ‘05.

Stefano Luzzatto (Imperial College London) One-dimensional dynamics 9 / 22
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and monotone on each interval ±[ŷ, ỹ].
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This kind of maps, associated to contracting Lorenz attractors was 

first discussed by Arneodo, Coullet and Tresser [ACT]. Their interest, 

however, was on the appearance of cascades of bifurcations as a tran- 

sition to chaotic behaviour, and not on the persistence of the attractor 
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Property (b) of the theorem follows applying to this map the meth- 

ods of Benedicks and Carleson [BCI], [BC2], suitable modified. 

The open and dense set in property (a), where the vector field ex- 

hibits what can be described as Axiom A dynamics, follows also from 

analyzing this map and exploiting its monotonicity property. 
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point of the interval (e−!/"#,#) and fix two points xk0 < ŷ < ỹ< #, with | f̂ ′(ŷ)| >> 1. Then we

take f to be any smooth map on S1 coinciding with f̂ on [−ŷ, ŷ], coinciding with f̃ on S1\ [−ỹ, ỹ],
and monotone on each interval ±[ŷ, ỹ].
Finally let fµ be the following one-parameter family of circle maps unfolding the dynamics of

f = f0

fµ(z) =

{

f (z)+µ for z ∈ (0,#]
f (z)−µ for z ∈ [−#,0) (1.3)

for µ∈ (−#,#). For z ∈ S1 \ [−#,#] we assume only that
∣

∣

$
$µ
fµ(z)

∣

∣ ≥ 2. In what follows we write
z±k (µ) = fµ(xk) for |k|≥ k0.

Theorem 1.1. [PRV, Theorem A] For a given % ∈ (1,
√
%̃) there exists an integer N such that

taking k0 > N in the construction of f , we can find a small positive constant &̃ such that for

0< &< &̃ there exists a positive Lebesgue measure subset S⊂ (−#,#) satisfying for every µ∈ S

(1) for all n≥ 1 and all k0 ≤ |k|≤ '

(a)

∣

∣

∣

(

f nµ
)′

(z±k (µ))
∣
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∣
≥ %n;

(b) either | f nµ( fµ(xl))| > # or | f nµ( fµ(xl))− xm(n)|≥ e−&n;
where xm(n) is the critical point nearest f

n
µ( fµ(xl)).

(2) liminfn→+'n
−1 log |( f nµ)′(z)|≥ log%/3 for Lebesgue almost every point z ∈ S1;

(3) there exists z ∈ S1 whose orbit { f nµ(z) : n≥ 0} is dense in S1.

The statement of Theorem 1.1 is slightly different from the main statement of [PRV] but the

proof is contained therein.

1.2. Existence of absolutely continuous invariant probability measures. The purpose of this

work is to prove that for parameters µ ∈ S the map fµ admits a unique absolutely continuous

invariant probability measure (µ, whose basin covers Lebesgue almost every point of S
1, and to

study some of the main statistical and ergodic properties of these measures.

Theorem
Ω+ has positive measure
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The basic question. . .

Given a particular map f

What is the dynamics of f ?

Given a parameter value a ∈ Ω.

Is a ∈ Ω− ? Is a ∈ Ω+ ?
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Ω−

Simó and Tatjer [1991, 2006]. Quadratic family.

Numerical evaluation of periodic windows.

Up to period 24 (≤ 13 easy. . . )
Up to size about 10−30

About 30 million windows. . .

If Ω = [afeig, 2]
|Ω−|
|Ω|

> 0.103 . . .

What happens in the remaining 90% of parameters ?
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a ∈ Ω+

Theorem (Conditions which give a ∈ Ω+ )
1 Critical points satisfy some growth conditions

Unimodal:∑
|(fn)′(f(c))|−` < ∞ (Now-Str 91);

|(fn)′(f(c))| → ∞ (Bru-Str 03)

Multimodal:
∑
|(fn)′(f(c))|−` < ∞ (Bru-L-Str 03)

2 Lebesgue a.e. point satisfy some exponential
growth conditions

Unimodal (Keller 90)
Multimodal (Alv-Bon-Via 00, Alv-L-Pin 04)

Require computing an infinite number of iterations
with infinite precision. Impossible in practice.
Arbieto-Matheus [04] Ω+ is undecidable.
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The basic question revisited

Let a ∈ Ω = [afeig, 2].

Can we estimate a probability that a ∈ Ω+ ?

Let Ωa be a small neighbourhood of a.

Can we estimate |Ω+
a |/|Ωa| ?

Possibly combine many neighbourhoods (in the
complement of Simó-Tatjer set of periodic windows)
to get global bound for

|Ω+|/|Ω|
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The Main Theorem

Let fa(x) = f(x) + a, a ∈ Ω quadratic critical point.

Suppose constants δ, ι, C1, λ, N, α0, λ0 are given and
satisfy formal conditions (C1)-(C4).
Suppose {fa}a∈Ω satisfies computationally verifiable
conditions (A1)-(A4) in terms of these constants.

Theorem (Luzzatto-Takahasi, 06)
There exists an explicitly computable constant

η = η(N, δ, ι, C1, λ, α0, λ0) ∈ (0, 1)

such that
|Ω+| ≥ (1− η)|Ω|.
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Quantitative results

Theorem (Luzzatto-Takahasi, 06)
Let fa(x) = x2 − a be the one-dimensional quadratic
family. Let

Ω = [2− 10−4990, 2]

Then
|Ω+| ≥ 0.98|Ω|

In particular
|Ω+| ≥ 10−5000.
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Further work: theoretical part

Extensions to more general families
multiple critical points
degenerate critical points
critical points depending on the parameter
singularities

should be (relatively) straightforward.

No conceptual obstructions (but very technical).

Open to interested volunteers.
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Further work: computational issues

Systematic application of result to other regions of
parameter space involves non-trivial computational
issues.

Work in progress with H. Kokubu, K. Mischaikow,
others. . .

Two kinds of issues:
Numerical algorithms for the verification of
conditions (A1)-(A4).
Determining admissible sets of constants
satisfying conditions (C1)-(C4).
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Conditions (A1)-(A4)

δ, ι, C1, λ, N, α0, λ0,

∆ = (−δ, δ), ∆+ = (−δι, δι)
(A1) x, .., fn−1

a (x) /∈ ∆, x ∈ fa(∆
+) or fn

a (x) ∈ ∆+

|(fn
a )′(x)| ≥ C1e

λn

(A2) ∃Ñ ≥ N s.t. |fn
a (c)| /∈ ∆+ ∀ n ≤ Ñ and

|{f Ñ
a (c) : a ∈ Ω}| ≥ δι

(A3) |fn
a (c)| ≥ e−α0n for all n ≤ N

(A4) ∃N̂ ≥ 1 s.t. 1−
∣∣∣∑N̂

i=1
1

(f i)′(c0)

∣∣∣− e−λ0(N̂+1)

1−e−λ0
> 0.
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(A2) ∃Ñ ≥ N s.t. |fn
a (c)| /∈ ∆+ ∀ n ≤ Ñ and
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a (c) : a ∈ Ω}| ≥ δι

(A3) |fn
a (c)| ≥ e−α0n for all n ≤ N

(A4) ∃N̂ ≥ 1 s.t. 1−
∣∣∣∑N̂

i=1
1

(f i)′(c0)

∣∣∣− e−λ0(N̂+1)

1−e−λ0
> 0.

Stefano Luzzatto (Imperial College London) One-dimensional dynamics 18 / 22



Conditions (A1)-(A4)

δ, ι, C1, λ, N, α0, λ0, ∆ = (−δ, δ), ∆+ = (−δι, δι)
(A1) x, .., fn−1

a (x) /∈ ∆, x ∈ fa(∆
+) or fn

a (x) ∈ ∆+

|(fn
a )′(x)| ≥ C1e

λn
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Conditions (C1)-(C4)

δ, ι, C1, λ, N, α0, λ0

(C1) λ > λ0 > α0 ≥ log δ−1/N

Introduce 27 auxiliary constants

M1, M2, L1, L2,D1,D2,D3, D̂,D, Γ1, C3, C̃3
α1, k0, τ1, τ0, γ0, γ̃0, γ1, τ, α, γ2, γ, η̃, η

defined explicitly in terms of δ, ι, C1, λ, N, α0, λ0 and
constants defined previously.
(C2) α0τ0 < 1, (C3)..., (C4) η < 1. Need to find sets

of admissible constants.
How ? Don’t know. . .
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Remarks

General approach perhaps analogous to that of
constructive KAM theory

(Simó, de la Llave, Celletti,
Chierchia,. . . ), just 20 years behind. . .

Combination of deep
analytic/geometric/probabilistic techniques
which rely on highly non-trivial assumptions
(hyperbolicity, non-degeneracy. . . )
with powerful computational methods to check
assumptions in specific situations
and to obtain explicit estimates.
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Strategy of proof

Follow classical strategy:

Ω(n) = {a ∈ Ω : (∗)n holds } and Ω+ =
⋂
n≥1

Ω(n)

Proposition
∃ N > 0, α > 0 such that
•Ω(k) = Ω(k−1); for n ≤ N :
•|Ω(n)| ≥ |Ω(n−1)| − e−αn|Ω|. for n ≥ N

Then

|Ω+| ≥

(
1−

∞∑
i=N

e−αn

)
|Ω|
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Comparison with classical
approaches

Existing proofs apply to
a “sufficiently small” neighbourhood Ω

of some “good” parameter value a∗.
But

There is no explicit control over the size of Ω or
the proportion of good parameters in Ω;
the existence of a good parameter a∗ in Ω is
undecidable.
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