A computer assisted proof in one-dimensional dynamics

Stefano Luzzatto

Mathematics Department, Imperial College London

Będlewo, 7 June 2006

The quadratic/logistic family

Quadratic family $f_a(x) = x^2 - a$

Logistic family $f_{\lambda}(x) = \lambda x(1-x)$

Bifurcation diagrams

Regular dynamics

Regular dynamics

Definition *f* is regular (or periodic)

Regular dynamics

Definition

f is regular (or periodic) if almost every point converges to a fixed or periodic orbit.

Definition

f is stochastic

Definition

Definition

f is **stochastic** if the dynamics of almost every point is described by a probability measure μ which is

invariant

Definition

- invariant
- ergodic

Definition

- invariant
- ergodic
- absolutely continuous wrt Lebesgue

Definition

- invariant
- ergodic
- absolutely continuous wrt Lebesgue
- has a positive Lyapunov exponent:

$$\int \log |f'| d\mu > 0.$$

Let $\Omega \subset \mathbb{R}$ be an interval and

 ${f_a}_{a\in\Omega}$

a family of interval maps parametrized by Ω .

Let $\Omega \subset \mathbb{R}$ be an interval and

 ${f_a}_{a\in\Omega}$

a family of interval maps parametrized by Ω . Let

 $\Omega^- = \{a : f_a \text{ is regular }\}$

Let $\Omega \subset \mathbb{R}$ be an interval and

 ${f_a}_{a\in\Omega}$

a family of interval maps parametrized by Ω . Let

 $\Omega^- = \{a : f_a \text{ is regular }\}$

and

 $\Omega^+ = \{a : f_a \text{ is stochastic}\}$

Let $f_a(x) = x^2 - a$ and $\Omega = [a_{feig}, 2]$.

Stefano Luzzatto (Imperial College London)

Let
$$f_a(x) = x^2 - a$$
 and $\Omega = [a_{feig}, 2]$.

Theorem (Lyubich '02)

Let
$$f_a(x) = x^2 - a$$
 and $\Omega = [a_{feig}, 2]$.

Theorem (Lyubich '02)

 $\Omega^{-} \cup \Omega^{+}$ has full measure in Ω .

Let
$$f_a(x) = x^2 - a$$
 and $\Omega = [a_{feig}, 2]$.

Theorem (Lyubich '02)

 $\Omega^{-} \cup \Omega^{+}$ has full measure in Ω .

Theorem (Graczyk-Swiatek, Lyubich '97)

Let
$$f_a(x) = x^2 - a$$
 and $\Omega = [a_{feig}, 2]$.

Theorem (Lyubich '02)

 $\Omega^{-} \cup \Omega^{+}$ has full measure in Ω .

Theorem (Graczyk-Swiatek, Lyubich '97)

 Ω^- is open and dense in Ω .

Let
$$f_a(x) = x^2 - a$$
 and $\Omega = [a_{feig}, 2]$.

Theorem (Lyubich '02)

 $\Omega^{-} \cup \Omega^{+}$ has full measure in Ω .

Theorem (Graczyk-Swiatek, Lyubich '97)

 Ω^- is open and dense in Ω .

Theorem (Jakobson '81)

Let
$$f_a(x) = x^2 - a$$
 and $\Omega = [a_{feig}, 2]$.

Theorem (Lyubich '02)

 $\Omega^{-} \cup \Omega^{+}$ has full measure in Ω .

Theorem (Graczyk-Swiatek, Lyubich '97)

 Ω^- is open and dense in $\Omega.$

Theorem (Jakobson '81)

 Ω^+ has positive measure in Ω .

Let
$$f_a(x) = x^2 - a$$
 and $\Omega = [a_{feig}, 2]$.

Theorem (Lyubich '02)

 $\Omega^{-} \cup \Omega^{+}$ has full measure in Ω .

Theorem (Graczyk-Swiatek, Lyubich '97)

 Ω^- is open and dense in $\Omega.$

Theorem (Jakobson '81)

 Ω^+ has positive measure in Ω .

The actual measures of Ω^- and Ω^+ are not known.

Let ${f_a}_{a\in\Omega}$ generic (multimodal) smooth family.

Let ${f_a}_{a\in\Omega}$ generic (multimodal) smooth family.

Theorem (Tsuji '92, Bruin-L-van Strien '03)

Ω^+ has positive measure.

Let ${f_a}_{a\in\Omega}$ generic (multimodal) smooth family.

Theorem (Tsuji '92, Bruin-L-van Strien '03)

 Ω^+ has positive measure.

Theorem (Koslovsky-Shen-van Strien '05)

 Ω^- is open and dense in Ω .

Let ${f_a}_{a\in\Omega}$ generic (multimodal) smooth family.

Theorem (Tsuji '92, Bruin-L-van Strien '03)

 Ω^+ has positive measure.

Theorem (Koslovsky-Shen-van Strien '05)

 Ω^- is open and dense in Ω .

It is not known if $\Omega^- \cup \Omega^+$ has full measure.

Theorem

 Ω^+ has positive measure

Stefano Luzzatto (Imperial College London)

Theorem

 Ω^+ has positive measure

Contracting Lorenz: Rovella '93, Metzger '00

Stefano Luzzatto (Imperial College London)

Theorem

Ω^+ has positive measure

Contracting Lorenz: Rovella '93, Metzger '00

Lorenz-like with singularities: L-Tucker '99, L-Viana '00, Diaz-Holland-L '05
Genericity results: non-smooth maps

Theorem

Ω^+ has positive measure

Contracting Lorenz: Rovella '93, Metzger '00

Lorenz-like with singularities: L-Tucker '99, L-Viana '00, Diaz-Holland-L '05

Infinite-modal: Rovella-Pacifico-Viana '89, Araujo-Pacifico '05.

Given a particular map f

What is the dynamics of f?

Given a particular map f

What is the dynamics of f?

Given a parameter value $a \in \Omega$.

Given a particular map f

What is the dynamics of f?

Given a parameter value $a \in \Omega$.

Is $a \in \Omega^-$? Is $a \in \Omega^+$?

Simó and Tatjer [1991, 2006].

Simó and Tatjer [1991, 2006]. Quadratic family.

• Up to period 24

• Up to period 24 (≤ 13 easy...)

- Up to period 24 (≤ 13 easy...)
- Up to size about 10^{-30}

- Up to period 24 (≤ 13 easy...)
- Up to size about 10^{-30}
- About 30 million windows...

- Up to period 24 (≤ 13 easy...)
- Up to size about 10^{-30}
- About 30 million windows...

If $\Omega = [a_{feig}, 2]$

- Up to period 24 (≤ 13 easy...)
- Up to size about 10^{-30}
- About 30 million windows...

If
$$\Omega = [a_{feig}, 2]$$

 $\frac{|\Omega^-|}{|\Omega|} > 0.103 \dots$

- Up to period 24 (≤ 13 easy...)
- Up to size about 10^{-30}
- About 30 million windows...

If
$$\Omega = [a_{feig}, 2]$$

 $\frac{|\Omega^-|}{|\Omega|} > 0.103 \dots$

What happens in the remaining 90% of parameters ?

Theorem (Conditions which give $a \in \Omega^+$)

Stefano Luzzatto (Imperial College London)

One-dimensional dynamics

Theorem (Conditions which give $a \in \Omega^+$)

Critical points satisfy some growth conditions

Stefano Luzzatto (Imperial College London)

One-dimensional dynamics

Theorem (Conditions which give $a \in \Omega^+$)

Critical points satisfy some growth conditions Unimodal:

Theorem (Conditions which give $a \in \Omega^+$)

Critical points satisfy some growth conditions Unimodal:

• $\sum |(f^n)'(f(c))|^{-\ell} < \infty$ (Now-Str 91);

Stefano Luzzatto (Imperial College London)

Theorem (Conditions which give $a \in \Omega^+$)

Critical points satisfy some growth conditions Unimodal:

- $\sum |(f^n)'(f(c))|^{-\ell} < \infty$ (Now-Str 91);
- $|(f^n)'(f(c))| \to \infty$ (Bru-Str 03)

- Critical points satisfy some growth conditions
 Unimodal:
 - $\sum |(f^n)'(f(c))|^{-\ell} < \infty$ (Now-Str 91);
 - $|(f^n)'(f(c))| \to \infty$ (Bru-Str 03)
 - Multimodal: $\sum |(f^n)'(f(c))|^{-\ell} < \infty$ (Bru-L-Str 03)

- Critical points satisfy some growth conditions
 Unimodal:
 - $\sum |(f^n)'(f(c))|^{-\ell} < \infty$ (Now-Str 91);
 - $|(f^n)'(f(c))| \to \infty$ (Bru-Str 03)
 - Multimodal: $\sum |(f^n)'(f(c))|^{-\ell} < \infty$ (Bru-L-Str 03)
- Lebesgue a.e. point satisfy some exponential growth conditions

- Critical points satisfy some growth conditions
 Unimodal:
 - $\sum |(f^n)'(f(c))|^{-\ell} < \infty$ (Now-Str 91);
 - $|(f^n)'(f(c))| \to \infty$ (Bru-Str 03)
 - Multimodal: $\sum |(f^n)'(f(c))|^{-\ell} < \infty$ (Bru-L-Str 03)
- Lebesgue a.e. point satisfy some exponential growth conditions
 - Unimodal (Keller 90)

- Critical points satisfy some growth conditions
 Unimodal:
 - $\sum |(f^n)'(f(c))|^{-\ell} < \infty$ (Now-Str 91);
 - $|(f^n)'(f(c))| \to \infty$ (Bru-Str 03)
 - Multimodal: $\sum |(f^n)'(f(c))|^{-\ell} < \infty$ (Bru-L-Str 03)
- Lebesgue a.e. point satisfy some exponential growth conditions
 - Unimodal (Keller 90)
 - Multimodal (Alv-Bon-Via 00, Alv-L-Pin 04)

Theorem (Conditions which give $a \in \Omega^+$)

- Critical points satisfy some growth conditions
 Unimodal:
 - $\sum |(f^n)'(f(c))|^{-\ell} < \infty$ (Now-Str 91);
 - $\overline{|(f^n)'(f(c))|} \to \infty$ (Bru-Str 03)
 - Multimodal: $\sum |(f^n)'(f(c))|^{-\ell} < \infty$ (Bru-L-Str 03)
- Lebesgue a.e. point satisfy some exponential growth conditions
 - Unimodal (Keller 90)
 - Multimodal (Alv-Bon-Via 00, Alv-L-Pin 04)

Require computing an infinite number of iterations with infinite precision.

Theorem (Conditions which give $a \in \Omega^+$)

- Critical points satisfy some growth conditions
 Unimodal:
 - $\sum |(f^n)'(f(c))|^{-\ell} < \infty$ (Now-Str 91);
 - $\overline{|(f^n)'(f(c))|} \to \infty$ (Bru-Str 03)
 - Multimodal: $\sum |(f^n)'(f(c))|^{-\ell} < \infty$ (Bru-L-Str 03)
- Lebesgue a.e. point satisfy some exponential growth conditions
 - Unimodal (Keller 90)
 - Multimodal (Alv-Bon-Via 00, Alv-L-Pin 04)

Require computing an infinite number of iterations with infinite precision. *Impossible in practice*.

Theorem (Conditions which give $a \in \Omega^+$)

- Critical points satisfy some growth conditions
 Unimodal:
 - $\sum |(f^n)'(f(c))|^{-\ell} < \infty$ (Now-Str 91);
 - $\overline{|(f^n)'(f(c))|} \to \infty$ (Bru-Str 03)
 - Multimodal: $\sum |(f^n)'(f(c))|^{-\ell} < \infty$ (Bru-L-Str 03)
- Lebesgue a.e. point satisfy some exponential growth conditions
 - Unimodal (Keller 90)
 - Multimodal (Alv-Bon-Via 00, Alv-L-Pin 04)

Require computing an infinite number of iterations with infinite precision. *Impossible in practice*. Arbieto-Matheus [04] Ω^+ is undecidable.

Let $a \in \Omega = [a_{feig}, 2]$.

Can we estimate a **probability** that $a \in \Omega^+$?

Let $a \in \Omega = [a_{feig}, 2]$.

Can we estimate a **probability** that $a \in \Omega^+$?

Let Ω_a be a small neighbourhood of a.

Let $a \in \Omega = [a_{feig}, 2]$.

Can we estimate a **probability** that $a \in \Omega^+$?

Let Ω_a be a small neighbourhood of a.

Can we estimate $|\Omega_a^+|/|\Omega_a|$?

Let $a \in \Omega = [a_{feig}, 2]$.

Can we estimate a **probability** that $a \in \Omega^+$?

Let Ω_a be a small neighbourhood of a.

Can we estimate $|\Omega_a^+|/|\Omega_a|$?

Possibly combine many neighbourhoods

Let $a \in \Omega = [a_{feig}, 2]$.

Can we estimate a **probability** that $a \in \Omega^+$?

Let Ω_a be a small neighbourhood of a.

Can we estimate
$$|\Omega_a^+|/|\Omega_a|$$
 ?

Possibly combine many neighbourhoods (in the complement of Simó-Tatjer set of periodic windows)

Let $a \in \Omega = [a_{feig}, 2]$.

Can we estimate a **probability** that $a \in \Omega^+$?

Let Ω_a be a small neighbourhood of a.

Can we estimate
$$|\Omega_a^+|/|\Omega_a|$$
 ?

Possibly combine many neighbourhoods (in the complement of Simó-Tatjer set of periodic windows) to get global bound for

Let $f_a(x) = f(x) + a, a \in \Omega$

Let $f_a(x) = f(x) + a, a \in \Omega$ quadratic critical point.

Let $f_a(x) = f(x) + a, a \in \Omega$ quadratic critical point. Suppose constants $\delta, \iota, C_1, \lambda, N, \alpha_0, \lambda_0$ are given and satisfy formal conditions (C1)-(C4).

Let $f_a(x) = f(x) + a, a \in \Omega$ quadratic critical point.

Suppose constants δ , ι , C_1 , λ , N, α_0 , λ_0 are given and satisfy formal conditions (C1)-(C4).

Suppose $\{f_a\}_{a\in\Omega}$ satisfies *computationally verifiable* conditions (A1)-(A4) in terms of these constants.

Let $f_a(x) = f(x) + a, a \in \Omega$ quadratic critical point.

Suppose constants δ , ι , C_1 , λ , N, α_0 , λ_0 are given and satisfy formal conditions (C1)-(C4).

Suppose $\{f_a\}_{a\in\Omega}$ satisfies *computationally verifiable* conditions (A1)-(A4) in terms of these constants.

Theorem (Luzzatto-Takahasi, 06)

Let $f_a(x) = f(x) + a, a \in \Omega$ quadratic critical point.

Suppose constants δ , ι , C_1 , λ , N, α_0 , λ_0 are given and satisfy formal conditions (C1)-(C4).

Suppose $\{f_a\}_{a\in\Omega}$ satisfies *computationally verifiable* conditions (A1)-(A4) in terms of these constants.

Theorem (Luzzatto-Takahasi, 06)

There exists an explicitly computable constant

Let $f_a(x) = f(x) + a, a \in \Omega$ quadratic critical point.

Suppose constants δ , ι , C_1 , λ , N, α_0 , λ_0 are given and satisfy formal conditions (C1)-(C4).

Suppose $\{f_a\}_{a \in \Omega}$ satisfies *computationally verifiable* conditions (A1)-(A4) in terms of these constants.

Theorem (Luzzatto-Takahasi, 06)

There exists an explicitly computable constant

$$\eta = \eta(N, \delta, \iota, C_1, \lambda, \alpha_0, \lambda_0) \in (0, 1)$$

Let $f_a(x) = f(x) + a, a \in \Omega$ quadratic critical point.

Suppose constants δ , ι , C_1 , λ , N, α_0 , λ_0 are given and satisfy formal conditions (C1)-(C4).

Suppose $\{f_a\}_{a \in \Omega}$ satisfies *computationally verifiable* conditions (A1)-(A4) in terms of these constants.

Theorem (Luzzatto-Takahasi, 06)

There exists an explicitly computable constant

$$\eta = \eta(N, \delta, \iota, C_1, \lambda, \alpha_0, \lambda_0) \in (0, 1)$$

such that

Let $f_a(x) = f(x) + a, a \in \Omega$ quadratic critical point.

Suppose constants δ , ι , C_1 , λ , N, α_0 , λ_0 are given and satisfy formal conditions (C1)-(C4).

Suppose $\{f_a\}_{a \in \Omega}$ satisfies *computationally verifiable* conditions (A1)-(A4) in terms of these constants.

Theorem (Luzzatto-Takahasi, 06)

There exists an explicitly computable constant

$$\eta = \eta(N, \delta, \iota, C_1, \lambda, \alpha_0, \lambda_0) \in (0, 1)$$

such that

 $|\Omega^+| \ge (1-\eta)|\Omega|.$

Theorem (Luzzatto-Takahasi, 06)

Stefano Luzzatto (Imperial College London)

Theorem (Luzzatto-Takahasi, 06)

Let $f_a(x) = x^2 - a$ be the one-dimensional quadratic family.

Theorem (Luzzatto-Takahasi, 06)

Let $f_a(x) = x^2 - a$ be the one-dimensional quadratic family. Let

$$\Omega = [2 - 10^{-4990}, 2]$$

Theorem (Luzzatto-Takahasi, 06)

Let $f_a(x) = x^2 - a$ be the one-dimensional quadratic family. Let

$$\Omega = [2 - 10^{-4990}, 2]$$

Then

 $|\Omega^+| \ge 0.98 |\Omega|$

Stefano Luzzatto (Imperial College London)

Theorem (Luzzatto-Takahasi, 06)

Let $f_a(x) = x^2 - a$ be the one-dimensional quadratic family. Let

$$\Omega = [2 - 10^{-4990}, 2]$$

Then

 $|\Omega^+| \ge 0.98 |\Omega|$

In particular

$$\Omega^+| \ge 10^{-5000}.$$

Extensions to more general familiesmultiple critical points

- multiple critical points
- degenerate critical points

- multiple critical points
- degenerate critical points
- critical points depending on the parameter

- multiple critical points
- degenerate critical points
- critical points depending on the parameter
- singularities

Extensions to more general families

- multiple critical points
- degenerate critical points
- critical points depending on the parameter
- singularities

should be (relatively) straightforward.

Extensions to more general families

- multiple critical points
- degenerate critical points
- critical points depending on the parameter
- singularities

should be (relatively) straightforward.

No conceptual obstructions (but very technical).

Extensions to more general families

- multiple critical points
- degenerate critical points
- critical points depending on the parameter
- singularities

should be (relatively) straightforward.

No conceptual obstructions (but very technical).

Open to interested volunteers.

Systematic application of result to other regions of parameter space involves non-trivial computational issues.

Systematic application of result to other regions of parameter space involves non-trivial computational issues.

Work in progress with H. Kokubu, K. Mischaikow, others...

Systematic application of result to other regions of parameter space involves non-trivial computational issues.

Work in progress with H. Kokubu, K. Mischaikow, others...

Two kinds of issues:

Systematic application of result to other regions of parameter space involves non-trivial computational issues.

Work in progress with H. Kokubu, K. Mischaikow, others...

Two kinds of issues:

 Numerical algorithms for the verification of conditions (A1)-(A4).

Systematic application of result to other regions of parameter space involves non-trivial computational issues.

Work in progress with H. Kokubu, K. Mischaikow, others...

Two kinds of issues:

- Numerical algorithms for the verification of conditions (A1)-(A4).
- Determining admissible sets of constants satisfying conditions (C1)-(C4).

 $\delta, \iota, C_1, \lambda, N, \alpha_0, \lambda_0,$

$\delta, \iota, C_1, \lambda, N, \alpha_0, \lambda_0, \Delta = (-\delta, \delta), \Delta^+ = (-\delta^{\iota}, \delta^{\iota})$

 $\delta, \iota, C_1, \lambda, N, \alpha_0, \lambda_0, \Delta = (-\delta, \delta), \Delta^+ = (-\delta^{\iota}, \delta^{\iota})$ (A1)

$$\begin{split} \delta, \iota, C_1, \lambda, N, \alpha_0, \lambda_0, \Delta &= (-\delta, \delta), \Delta^+ = (-\delta^{\iota}, \delta^{\iota}) \\ \text{(A1)} \ x, .., f_a^{n-1}(x) \notin \Delta, \end{split}$$

 $\delta, \iota, C_1, \lambda, N, \alpha_0, \lambda_0, \Delta = (-\delta, \delta), \Delta^+ = (-\delta^{\iota}, \delta^{\iota})$ (A1) $x, ..., f_a^{n-1}(x) \notin \Delta, x \in f_a(\Delta^+)$ or $f_a^n(x) \in \Delta^+$
$\delta, \iota, C_1, \lambda, N, \alpha_0, \lambda_0, \Delta = (-\delta, \delta), \Delta^+ = (-\delta^{\iota}, \delta^{\iota})$ (A1) $x, ..., f_a^{n-1}(x) \notin \Delta, x \in f_a(\Delta^+)$ or $f_a^n(x) \in \Delta^+$ $|(f_a^n)'(x)| \ge C_1 e^{\lambda n}$

 $\delta, \iota, C_1, \lambda, N, \alpha_0, \lambda_0, \Delta = (-\delta, \delta), \Delta^+ = (-\delta^{\iota}, \delta^{\iota})$ (A1) $x, ..., f_a^{n-1}(x) \notin \Delta, x \in f_a(\Delta^+)$ or $f_a^n(x) \in \Delta^+$ $|(f_a^n)'(x)| \ge C_1 e^{\lambda n}$

(A2)

$$\delta, \iota, C_1, \lambda, N, \alpha_0, \lambda_0, \Delta = (-\delta, \delta), \Delta^+ = (-\delta^{\iota}, \delta^{\iota})$$
(A1) $x, ..., f_a^{n-1}(x) \notin \Delta, x \in f_a(\Delta^+) \text{ or } f_a^n(x) \in \Delta^+$

$$|(f_a^n)'(x)| \ge C_1 e^{\lambda n}$$

(A2) $\exists \tilde{N} \geq N$ s.t.

 $\delta, \iota, C_1, \lambda, N, \alpha_0, \lambda_0, \Delta = (-\delta, \delta), \Delta^+ = (-\delta^{\iota}, \delta^{\iota})$ (A1) $x, ..., f_a^{n-1}(x) \notin \Delta, x \in f_a(\Delta^+)$ or $f_a^n(x) \in \Delta^+$ $|(f_a^n)'(x)| > C_1 e^{\lambda n}$ (A2) $\exists \tilde{N} \geq N$ s.t. $|f_a^n(c)| \notin \Delta^+ \forall n \leq \tilde{N}$

 $\delta, \iota, C_1, \lambda, N, \alpha_0, \lambda_0, \Delta = (-\delta, \delta), \Delta^+ = (-\delta^{\iota}, \delta^{\iota})$ (A1) $x, ..., f_a^{n-1}(x) \notin \Delta, x \in f_a(\Delta^+)$ or $f_a^n(x) \in \Delta^+$ $|(f_a^n)'(x)| > C_1 e^{\lambda n}$ (A2) $\exists \tilde{N} \geq N$ s.t. $|f_a^n(c)| \notin \Delta^+ \forall n \leq \tilde{N}$ and

$$\begin{split} \delta, \iota, C_1, \lambda, N, \alpha_0, \lambda_0, \Delta &= (-\delta, \delta), \Delta^+ = (-\delta^\iota, \delta^\iota) \\ \text{(A1)} x, .., f_a^{n-1}(x) \notin \Delta, x \in f_a(\Delta^+) \text{ or } f_a^n(x) \in \Delta^+ \\ &|(f_a^n)'(x)| \ge C_1 e^{\lambda n} \\ \text{(A2)} \exists \tilde{N} \ge N \text{ s.t. } |f_a^n(c)| \notin \Delta^+ \forall n \le \tilde{N} \text{ and} \\ &|\{f_a^{\tilde{N}}(c) : a \in \Omega\}| \end{split}$$

$$\begin{split} \delta, \iota, C_1, \lambda, N, \alpha_0, \lambda_0, \Delta &= (-\delta, \delta), \Delta^+ = (-\delta^\iota, \delta^\iota) \\ \text{(A1)} x, .., f_a^{n-1}(x) \notin \Delta, x \in f_a(\Delta^+) \text{ or } f_a^n(x) \in \Delta^+ \\ &|(f_a^n)'(x)| \ge C_1 e^{\lambda n} \\ \text{(A2)} \exists \tilde{N} \ge N \text{ s.t. } |f_a^n(c)| \notin \Delta^+ \forall \ n \le \tilde{N} \text{ and} \\ &|\{f_a^{\tilde{N}}(c) : a \in \Omega\}| \ge \delta^\iota \end{split}$$

$$\begin{split} \delta, \iota, C_1, \lambda, N, \alpha_0, \lambda_0, \Delta &= (-\delta, \delta), \Delta^+ = (-\delta^{\iota}, \delta^{\iota}) \\ \text{(A1)} x, .., f_a^{n-1}(x) \notin \Delta, x \in f_a(\Delta^+) \text{ or } f_a^n(x) \in \Delta^+ \\ &|(f_a^n)'(x)| \ge C_1 e^{\lambda n} \\ \text{(A2)} \exists \tilde{N} \ge N \text{ s.t. } |f_a^n(c)| \notin \Delta^+ \forall n \le \tilde{N} \text{ and} \\ &|\{f_a^{\tilde{N}}(c) : a \in \Omega\}| \ge \delta^{\iota} \end{split}$$

(A3)

$$\begin{split} \delta, \iota, C_1, \lambda, N, \alpha_0, \lambda_0, \Delta &= (-\delta, \delta), \Delta^+ = (-\delta^\iota, \delta^\iota) \\ \text{(A1)} x, .., f_a^{n-1}(x) \notin \Delta, x \in f_a(\Delta^+) \text{ or } f_a^n(x) \in \Delta^+ \\ &|(f_a^n)'(x)| \ge C_1 e^{\lambda n} \\ \text{(A2)} \exists \tilde{N} \ge N \text{ s.t. } |f_a^n(c)| \notin \Delta^+ \forall n \le \tilde{N} \text{ and} \\ &|\{f_a^{\tilde{N}}(c) : a \in \Omega\}| \ge \delta^\iota \end{split}$$

(A3) $|f_a^n(c)| \ge e^{-\alpha_0 n}$ for all $n \le N$

$$\begin{split} \delta, \iota, C_1, \lambda, N, \alpha_0, \lambda_0, \Delta &= (-\delta, \delta), \Delta^+ = (-\delta^\iota, \delta^\iota) \\ \text{(A1)} x, .., f_a^{n-1}(x) \notin \Delta, x \in f_a(\Delta^+) \text{ or } f_a^n(x) \in \Delta^+ \\ &|(f_a^n)'(x)| \ge C_1 e^{\lambda n} \\ \text{(A2)} \exists \tilde{N} \ge N \text{ s.t. } |f_a^n(c)| \notin \Delta^+ \forall n \le \tilde{N} \text{ and} \\ &|\{f_a^{\tilde{N}}(c) : a \in \Omega\}| \ge \delta^\iota \end{split}$$

(A3) $|f_a^n(c)| \ge e^{-\alpha_0 n}$ for all $n \le N$ (A4)

$$\begin{split} \delta, \iota, C_1, \lambda, N, \alpha_0, \lambda_0, \Delta &= (-\delta, \delta), \Delta^+ = (-\delta^\iota, \delta^\iota) \\ \text{(A1)} x, .., f_a^{n-1}(x) \notin \Delta, x \in f_a(\Delta^+) \text{ or } f_a^n(x) \in \Delta^+ \\ &|(f_a^n)'(x)| \ge C_1 e^{\lambda n} \\ \text{(A2)} \exists \tilde{N} \ge N \text{ s.t. } |f_a^n(c)| \notin \Delta^+ \forall n \le \tilde{N} \text{ and} \\ &|\{f_a^{\tilde{N}}(c) : a \in \Omega\}| \ge \delta^\iota \end{split}$$

(A3) $|f_a^n(c)| \ge e^{-\alpha_0 n}$ for all $n \le N$ (A4) $\exists \hat{N} \ge 1$ s.t. $1 - \left|\sum_{i=1}^{\hat{N}} \frac{1}{(f^i)'(c_0)}\right| - \frac{e^{-\lambda_0(\hat{N}+1)}}{1 - e^{-\lambda_0}} > 0.$

 $\delta, \iota, C_1, \lambda, N, \alpha_0, \lambda_0$

 $\delta, \iota, C_1, \lambda, N, \alpha_0, \lambda_0$ (C1) $\lambda > \lambda_0 > \alpha_0 \ge \log \delta^{-1/N}$

 $\delta, \iota, C_1, \lambda, N, \alpha_0, \lambda_0$ (C1) $\lambda > \lambda_0 > \alpha_0 \ge \log \delta^{-1/N}$ Introduce 27 auxiliary constants

 $M_1, M_2, L_1, L_2, \mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3, \hat{\mathcal{D}}, \mathcal{D}, \Gamma_1, C_3, \tilde{C}_3 \\\alpha_1, k_0, \tau_1, \tau_0, \gamma_0, \tilde{\gamma}_0, \gamma_1, \tau, \alpha, \gamma_2, \gamma, \tilde{\eta}, \eta$

 $\delta, \iota, C_1, \lambda, N, \alpha_0, \lambda_0$ (C1) $\lambda > \lambda_0 > \alpha_0 \ge \log \delta^{-1/N}$ Introduce 27 auxiliary constants

 $M_1, M_2, L_1, L_2, \mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3, \hat{\mathcal{D}}, \mathcal{D}, \Gamma_1, C_3, \tilde{C}_3 \\\alpha_1, k_0, \tau_1, \tau_0, \gamma_0, \tilde{\gamma}_0, \gamma_1, \tau, \alpha, \gamma_2, \gamma, \tilde{\eta}, \eta$

defined explicitly in terms of δ , ι , C_1 , λ , N, α_0 , λ_0 and constants defined previously.

 $\delta, \iota, C_1, \lambda, N, \alpha_0, \lambda_0$ (C1) $\lambda > \lambda_0 > \alpha_0 \ge \log \delta^{-1/N}$ Introduce 27 auxiliary constants

 $M_1, M_2, L_1, L_2, \mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3, \hat{\mathcal{D}}, \mathcal{D}, \Gamma_1, C_3, \tilde{C}_3 \\\alpha_1, k_0, \tau_1, \tau_0, \gamma_0, \tilde{\gamma}_0, \gamma_1, \tau, \alpha, \gamma_2, \gamma, \tilde{\eta}, \eta$

defined explicitly in terms of δ , ι , C_1 , λ , N, α_0 , λ_0 and constants defined previously. (C2) $\alpha_0 \tau_0 < 1$,

 $\delta, \iota, C_1, \lambda, N, \alpha_0, \lambda_0$ (C1) $\lambda > \lambda_0 > \alpha_0 \ge \log \delta^{-1/N}$ Introduce 27 auxiliary constants

 $M_1, M_2, L_1, L_2, \mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3, \hat{\mathcal{D}}, \mathcal{D}, \Gamma_1, C_3, \tilde{C}_3 \\\alpha_1, k_0, \tau_1, \tau_0, \gamma_0, \tilde{\gamma}_0, \gamma_1, \tau, \alpha, \gamma_2, \gamma, \tilde{\eta}, \eta$

defined explicitly in terms of δ , ι , C_1 , λ , N, α_0 , λ_0 and constants defined previously. (C2) $\alpha_0 \tau_0 < 1$, (C3)...,

 $\delta, \iota, C_1, \lambda, N, \alpha_0, \lambda_0$ (C1) $\lambda > \lambda_0 > \alpha_0 \ge \log \delta^{-1/N}$ Introduce 27 auxiliary constants

 $M_1, M_2, L_1, L_2, \mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3, \hat{\mathcal{D}}, \mathcal{D}, \Gamma_1, C_3, \tilde{C}_3 \\\alpha_1, k_0, \tau_1, \tau_0, \gamma_0, \tilde{\gamma}_0, \gamma_1, \tau, \alpha, \gamma_2, \gamma, \tilde{\eta}, \eta$

defined explicitly in terms of δ , ι , C_1 , λ , N, α_0 , λ_0 and constants defined previously. (C2) $\alpha_0 \tau_0 < 1$, (C3)..., (C4) $\eta < 1$.

 $\delta, \iota, C_1, \lambda, N, \alpha_0, \lambda_0$ (C1) $\lambda > \lambda_0 > \alpha_0 \ge \log \delta^{-1/N}$ Introduce 27 auxiliary constants

 $M_1, M_2, L_1, L_2, \mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3, \hat{\mathcal{D}}, \mathcal{D}, \Gamma_1, C_3, \tilde{C}_3 \\\alpha_1, k_0, \tau_1, \tau_0, \gamma_0, \tilde{\gamma}_0, \gamma_1, \tau, \alpha, \gamma_2, \gamma, \tilde{\eta}, \eta$

defined explicitly in terms of δ , ι , C_1 , λ , N, α_0 , λ_0 and constants defined previously. (C2) $\alpha_0 \tau_0 < 1$, (C3)..., (C4) $\eta < 1$. Need to find sets of admissible constants.

 $\delta, \iota, C_1, \lambda, N, \alpha_0, \lambda_0$ (C1) $\lambda > \lambda_0 > \alpha_0 \ge \log \delta^{-1/N}$ Introduce 27 auxiliary constants

 $M_1, M_2, L_1, L_2, \mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3, \hat{\mathcal{D}}, \mathcal{D}, \Gamma_1, C_3, \tilde{C}_3 \\\alpha_1, k_0, \tau_1, \tau_0, \gamma_0, \tilde{\gamma}_0, \gamma_1, \tau, \alpha, \gamma_2, \gamma, \tilde{\eta}, \eta$

defined explicitly in terms of δ , ι , C_1 , λ , N, α_0 , λ_0 and constants defined previously. (C2) $\alpha_0 \tau_0 < 1$, (C3)..., (C4) $\eta < 1$. Need to find sets of admissible constants. How ?

 $\delta, \iota, C_1, \lambda, N, \alpha_0, \lambda_0$ (C1) $\lambda > \lambda_0 > \alpha_0 \ge \log \delta^{-1/N}$ Introduce 27 auxiliary constants

 $M_1, M_2, L_1, L_2, \mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3, \hat{\mathcal{D}}, \mathcal{D}, \Gamma_1, C_3, \tilde{C}_3 \\\alpha_1, k_0, \tau_1, \tau_0, \gamma_0, \tilde{\gamma}_0, \gamma_1, \tau, \alpha, \gamma_2, \gamma, \tilde{\eta}, \eta$

defined explicitly in terms of δ , ι , C_1 , λ , N, α_0 , λ_0 and constants defined previously. (C2) $\alpha_0 \tau_0 < 1$, (C3)..., (C4) $\eta < 1$. Need to find sets of admissible constants. How ? Don't know...

General approach perhaps analogous to that of constructive KAM theory

General approach perhaps analogous to that of *constructive KAM theory* (Simó, de la Llave, Celletti, Chierchia,...), just 20 years behind...

 Combination of deep analytic/geometric/probabilistic techniques

- Combination of deep analytic/geometric/probabilistic techniques
- which rely on highly non-trivial assumptions (hyperbolicity, non-degeneracy...)

- Combination of deep analytic/geometric/probabilistic techniques
- which rely on highly non-trivial assumptions (hyperbolicity, non-degeneracy...)
- with powerful computational methods to check assumptions in specific situations

- Combination of deep analytic/geometric/probabilistic techniques
- which rely on highly non-trivial assumptions (hyperbolicity, non-degeneracy...)
- with powerful computational methods to check assumptions in specific situations
- and to obtain explicit estimates.

Follow classical strategy:

Stefano Luzzatto (Imperial College London)

Follow classical strategy:

$\Omega^{(n)} = \{a \in \Omega : (*)_n \text{ holds } \}$

Follow classical strategy:

 $\Omega^{(n)} = \{ a \in \Omega : (*)_n \text{ holds } \} \text{ and } \Omega^+ = \bigcap_{n \ge 1} \Omega^{(n)}$

Follow classical strategy:

 $\Omega^{(n)} = \{ a \in \Omega : (*)_n \text{ holds } \} \text{ and } \Omega^+ = \bigcap_{n \ge 1} \Omega^{(n)}$

Proposition $\exists N > 0, \alpha > 0$ such that

Follow classical strategy:

 $\Omega^{(n)} = \{ a \in \Omega : (*)_n \text{ holds } \} \text{ and } \Omega^+ = \bigcap_{n \ge 1} \Omega^{(n)}$

Proposition

 $\exists N > 0, \alpha > 0$ such that • $\Omega^{(k)} = \Omega^{(k-1)}; \text{ for } n \leq N:$

Follow classical strategy:

 $\Omega^{(n)} = \{ a \in \Omega : (*)_n \text{ holds } \} \text{ and } \Omega^+ = \bigcap_{n \ge 1} \Omega^{(n)}$

Proposition

 $\exists N > 0, \alpha > 0 \text{ such that}$ $\bullet \Omega^{(k)} = \Omega^{(k-1)}; \text{ for } n \le N;$ $\bullet |\Omega^{(n)}| \ge |\Omega^{(n-1)}| - e^{-\alpha n} |\Omega|. \text{ for } n \ge N$
Strategy of proof

Follow classical strategy:

 $\Omega^{(n)} = \{ a \in \Omega : (*)_n \text{ holds } \} \text{ and } \Omega^+ = \bigcap_{n \ge 1} \Omega^{(n)}$

Proposition

 $\exists N > 0, \alpha > 0 \text{ such that} \\ \bullet \Omega^{(k)} = \Omega^{(k-1)}; \text{ for } n \le N: \\ \bullet |\Omega^{(n)}| \ge |\Omega^{(n-1)}| - e^{-\alpha n} |\Omega|. \text{ for } n \ge N$

Then

$$|\Omega^+| \ge \left(1 - \sum_{i=N}^{\infty} e^{-\alpha n}\right) |\Omega|$$

Existing proofs apply to

Existing proofs apply to a "sufficiently small" neighbourhood Ω

Existing proofs apply to

- a "sufficiently small" neighbourhood Ω
- of some "good" parameter value *a*_{*}.

Existing proofs apply to

- a "sufficiently small" neighbourhood Ω
- of some "good" parameter value *a*_{*}.

But

Existing proofs apply to

- a "sufficiently small" neighbourhood Ω
- of some "good" parameter value a_{*}.

But

 There is no explicit control over the size of Ω or the proportion of good parameters in Ω;

Existing proofs apply to

- a "sufficiently small" neighbourhood Ω
- of some "good" parameter value a_{*}.

But

- There is no explicit control over the size of Ω or the proportion of good parameters in Ω;
- the existence of a good parameter a_{*} in Ω is undecidable.