Rigorous numerics to verify heteroclinic connections

by Stanislaus Maier-Paape (RWTH Aachen)

Collaboration with Karl Waninger, (RWTH Aachen)

Contents:

- **1.** Transverse heteroclinic connections
- **2.** Local situation near the equilibria
- **3.** Transport of the unstable manifold of the repeller $(W^u(x_R))$
- **4.** Intersection of $W^u(x_R)$ and $W^s(x_A)$

5. Outlook

Transverse heteroclinic connections

Let $F \colon \mathbb{R}^n \to \mathbb{R}$ be smooth. We consider a gradient system

$$\dot{x} = -\nabla F(x) =: f(x), \quad x \in \mathbb{R}^n$$
 (1)

with two hyperbolic equilibria x_R and $x_A \in \mathbb{R}^n$ with Morse indices Σ^{k+1} and $\Sigma^k (0 \le k \le n-1)$, respectively. From purely computational investigations we have some numerical "evidence" that there could be a heteroclinic connection between x_R (repeller) and x_A (attraktor), which is transverse (i.e. the stable ($W^s(x_A)$) and unstable ($W^u(x_R)$) manifolds intersect transversely). Let \tilde{x}^R be the numerical approximation of x^R and \tilde{x}^A be the numerical approximation of x^A . The numerical situation is as follows:

left cube: C_R right cube: C_A in pink: the Poincaré sections P_R and P_A

Here $C_R = B_r^{\|\cdot\|_{\infty}}(\tilde{x}_R)$ and $C_A = B_{\delta}^{\|\cdot\|_{\infty}}(\tilde{x}_A)$ are cubes around the approximative equilibria. P_R and P_A are faces of C_R and C_A , respectively, where the numerical orbit leaves or enters the cube.

Suppose now we can control the true unstable manifold $W^u(x^R)$ in all stable directions, on the Poincaré section P_R

local flat unstable manifold intersecting P_R (n = 3); x^R with index Σ^2

Similarly, the stable manifold of x_A may be controlled.

The main idea, is to move the subset of the Poincaré section which "clamps" the unstable manifold of x^R by an algorithm until it intersects the subset of the Poincaré section, which "clamps" the stable manifold of x^A .

Situation on the Poincaré section P_A x^R with index Σ^2 x^A with index Σ^1

Here both $W^u(x^R)$ and $W^s(x^A)$ are 2-dimensional. **Goal:** Construction of a rigorous numerical method (combined analysis and numerical verification) that indeed proves the existence of a heteroclinic connection between x_R and x_A .

Local situation near the equilibria

Let $x_0 \in \mathbb{R}^n$ be a hyperbolic equilibrium of $\dot{x} = f(x)$, with regular and symmetric linearization $Df(x_0) \in \mathbb{R}^{n \times n}$. Then there exists some orthogonal matrix $T \in O(n)$ such that

$$T Df(x^0) T^{-1} = \Lambda_0 := diag(\lambda_1, ..., \lambda_n)$$

with eigenvalues $\lambda_i \neq 0$.

Problem: All these quantities are only known as numerical approximations up to some error $\varepsilon > 0$, i.e. we can calculate some $\tilde{x}^0 \in \mathbb{R}^n$, some $\tilde{\Lambda}_0 = diag(\tilde{\lambda}_1, ..., \tilde{\lambda}_n), \ \tilde{\lambda}_i \neq 0$, and some $\tilde{T} \in O(n)$ with

(ERR)
$$\|x^0 - \tilde{x}^0\|_2 \leq \varepsilon r$$
, $\|\Lambda_0 - \tilde{\Lambda}_0\|_2 \leq \varepsilon \|\tilde{\Lambda}_0\|_2$
and $\|\tilde{T} - T\|_2 \leq \varepsilon$, $\|\tilde{T}^{-1} - T^{-1}\|_2 \leq \varepsilon$

Lemma 1: Under the assumption (ERR) and using the linear map $x \to \tilde{T}(x - \tilde{x}^0)$, the differential equation $\dot{x} = f(x)$ in $B_{2r}(x^0)$ is equivalent to the ODE

$$\dot{y} = \tilde{\Lambda}_0 y + \tilde{h}(y) + C_{\varepsilon}(y), \quad \text{for all} \quad y \in B_{2r}(0), \quad (2)$$

where $\tilde{h}: \mathbb{R}^n \to \mathbb{R}^n$ and $C_{\varepsilon}: \mathbb{R}^n \to \mathbb{R}^n$ satisfy

 $\|\tilde{h}(y)\|_2 \leq const \cdot r^2$ and $\|C_{\varepsilon}(y)\|_2 \leq const \cdot r\varepsilon$.

Observe that the fixed point x^0 of (1) is mapped to a fixed point $y^0 = \tilde{T}(x^0 - \tilde{x}^0)$ of (2) near zero.

Obviously it is much easier to make calculation with (2). In particular, we obtain from (2) precise estimates for points in the stable/unstable manifolds. For instance:

Lemma 2: (flat unstable manifold)

For $y^* = (y_1^*, ..., y_n^*) \in W^u(y^0) \cap B_{2r}(0)$ with backward orbit lying in $B_{2r}(0)$ we obtain

 $|y_i^*| \leq const \cdot (\varepsilon \cdot r + r^2)$ for all *i* with $\tilde{\lambda}_i < 0$ (stable directions!).

(cf. Figure p. 4) A similar lemma holds for the "flat stable manifold".

Remark: The numerical conditions to be assumed may be strengthend (spectral gap assumptions) in order to guarantee that $W^u(y^0) \cap B_{2r}(0)$ is in fact a graph over the linear subspace of unstable eigenfunctions.

Transport of the unstable manifold of the repeller

Clearly the estimates obtained for (2) can be used for (1) near the equilibria x_R (repeller) and x_A (attractor). In order to bring that information together we somehow have to transport the unstable manifold (or at least the relevant part of it) into a neighborhood of x_A .

Let $\tau > 0$ and $\Phi_{\tau} \colon \mathbb{R}^n \to \mathbb{R}^n$ be the flow corresponding to $\dot{x} = f(x)$. Then an enclosing algorithm $\mathcal{A}_{\tau} \colon G^n \to G^n$ has the property

 $\Phi_{\tau}(S) \subset \mathcal{A}_{\tau}(S)$ for all $S \in G^n$,

where G^n contains "generalized cubes" in \mathbb{R}^n .

I.e. we deal with numerical approximations which in a certain sense enclose the exact quantities (our implementation uses the CAPD-library of Zglicszynski & Wilczak). The next figure illustrates the part I_R of $B_r^{\|\cdot\|_{\infty}}(\tilde{x}^R)$ which contains the relevant part of $W^u(x^R)$ and therefore has to be transported by \mathcal{A}_{τ} into a neighborhood of x^A .

 I_R corresponds to the Poincaré section P_R , but is small orthogonal to $W^u(x^R)$ and thickened in the direction of the heteroclinic.

With \mathcal{A}_{τ} we transport

- The whole set I_R
- Faces of I_R
- In particular those faces of I_R which contain parts of $W^u(x^R)$.

 I_R is transported to a neighborhood of \tilde{x}^A (near P_A) Intersection of $W^u(x_R)$ and $W^s(x_A)$

Goal:

Formulate conditions on the images of \mathcal{A}_{τ} which guarantee $W^{u}(x^{R}) \cap W^{s}(x^{A}) \neq \emptyset$, and therefore the existence of a heteroclinic connection.

Assumptions:

- (A1) \mathcal{A}_{τ} is an enclosing algorithm for $\dot{x} = f(x), \quad x \in \mathbb{R}^n$
- (A2) $\tilde{W}^u(x^R) := W^u(x^R) \cap I_R$ is "clamped" in I_R from boundary to boundary, that is between faces which correspond to unstable directions (cf. Figure p. 11)

(A3) $\tilde{W}^{s}(x^{A}) := W^{s}(x^{A}) \cap P_{A}$ is similarly "clamped" between boundaries in the Poincaré section of the attractor. (for k = 0; i.e. x^{A} stable, we assume $B_{r}^{\|\cdot\|_{\infty}}(x^{A}) \subset W^{s}(x^{A})$.)

Theorem 1: $(\Sigma^1 \to \Sigma^0)$

Assume x^R and x^A have Morse index Σ^1 and Σ^0 , respectively. We assume besides (A1) - (A3) that

(A4) For sufficiently large $\tau > 0$ we have $\mathcal{A}_{\tau}(I_R) \subset B_r(\tilde{x}^A)$

Then $\Phi_{\tau}\left(\tilde{W}^{u}(x^{R})\right) \cap W^{s}(x^{A}) \neq \emptyset$, i.e. there is a connecting orbit between x^{R} and x^{A} .

Proof: The enclosing algorithm guarantees that at least one point of $W^u(x^R)$ gets transported into a small neighborhood of x^A which is part of the basin of attraction of x^A .

Theorem 2 $(\Sigma^2 \rightarrow \Sigma^1)$

Assume x^R and $x^{A'}$ have Morse index Σ^2 and Σ^1 , respectively. We assume (A1) – (A3). Then $\tilde{W}^s(x^A) = W^s(x^A) \cap P_A$ is a n-2dimensional curve and separates P_A locally into two parts. On the other hand the intersection of Φ . $(\tilde{W}^u(x^R))$ with P_A is a one-dimensional curve. Clearly one can formulate conditions on \mathcal{A}_{τ} of the faces of I_R that guarantee that these two curves lie "orthogonal" like in the following figure:

Then again $\Phi_{\bullet}(\tilde{W}^{u}(x^{R})) \cap W^{s}(x^{A}) \neq \emptyset,$ yielding a heteroclinic connection. **Proof:** Intermediate value theorem.

Outlook

Besides the cases $\Sigma^1 \to \Sigma^0$ and $\Sigma^2 \to \Sigma^1$ one can also handle the cases $\Sigma^n \to \Sigma^{n-1}$ and $\Sigma^{n-1} \to \Sigma^{n-2}$ through time reversal. Therefore, in \mathbb{R}^n with $n \leq 4$, all transverse heteroclinic connections may be verified numerically.

Other case are more subtle, because manifolds of codimension two or more do not separate the space \mathbb{R}^n into two parts.

Nevertheless, this is current research at our group (in particular Zofia Maczynska).