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Transverse heteroclinic connections

Let F : R
n → R be smooth. We consider a gradient system

ẋ = −∇F (x) =: f(x) , x ∈ R
n (1)

with two hyperbolic equilibria xR and xA ∈ R
n with Morse indices

Σk+1 and Σk(0 ≤ k ≤ n − 1), respectively. From purely

computational investigations we have some numerical ”evidence”

that there could be a heteroclinic connection between xR (repeller)

and xA (attraktor), which is transverse (i.e. the stable (W s(xA)) and

unstable (W u(xR)) manifolds intersect transversely).
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Let x̃R be the numerical approximation of xR and x̃A be the

numerical approximation of xA. The numerical situation is as follows:

Numerical estimates of a heteroclinic orbit

left cube: CR

right cube: CA

in pink: the Poincaré

sections PR and PA

Here CR = B
‖·‖∞

r (x̃R) and CA = B
‖·‖∞

δ
(x̃A) are cubes around the

approximative equilibria. PR and PA are faces of CR and CA,

respectively, where the numerical orbit leaves or enters the cube.
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Suppose now we can control the true unstable manifold W u(xR) in

all stable directions, on the Poincaré section PR

local flat unstable

manifold intersecting PR

(n = 3);

xR with index Σ2

Similarly, the stable manifold of xA may be controlled.
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The main idea, is to move the subset of the Poincaré section which

”clamps” the unstable manifold of xR by an algorithm until it

intersects the subset of the Poincaré section, which ”clamps” the

stable manifold of xA.

Situation on the Poincaré

section PA

xR with index Σ2

xA with index Σ1

Here both W u(xR) and W s(xA) are 2-dimensional.

Goal: Construction of a rigorous numerical method (combined

analysis and numerical verification) that indeed proves the existence

of a heteroclinic connection between xR and xA.
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Local situation near the equilibria

Let x0 ∈ R
n be a hyperbolic equilibrium of ẋ = f(x), with regular

and symmetric linearization Df(x0) ∈ R
n×n. Then there exists some

orthogonal matrix T ∈ O(n) such that

T Df(x0) T−1 = Λ0 := diag (λ1, ..., λn)

with eigenvalues λi 6= 0.

Problem: All these quantities are only known as numerical

approximations up to some error ε > 0, i.e. we can calculate some

x̃0 ∈ R
n, some Λ̃0 = diag (λ̃1, ..., λ̃n), λ̃i 6= 0, and some T̃ ∈ O(n)

with

(ERR) ‖x0 − x̃0‖2 ≤ ε r, ‖Λ0 − Λ̃0‖2 ≤ ε ‖Λ̃0‖2

and ‖T̃ − T‖2 ≤ ε , ‖T̃−1 − T−1‖2 ≤ ε
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Lemma 1: Under the assumption (ERR) and using the linear map

x → T̃ (x − x̃0), the differential equation ẋ = f(x) in B2r(x
0) is

equivalent to the ODE

ẏ = Λ̃0 y + h̃(y) + Cε(y) , for all y ∈ B2r(0) , (2)

where h̃ : R
n → R

n and Cε : R
n → R

n satisfy

‖h̃(y)‖2 ≤ const · r2 and ‖Cε(y)‖2 ≤ const · r ε .

Observe that the fixed point x0 of (1) is mapped to a fixed point

y0 = T̃ (x0 − x̃0) of (2) near zero.
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Obviously it is much easier to make calculation with (2). In

particular, we obtain from (2) precise estimates for points in the

stable/unstable manifolds. For instance:

Lemma 2: (flat unstable manifold)

For y∗ = (y∗
1 , ..., y∗

n) ∈ Wu(y0) ∩ B2r(0) with backward orbit lying

in B2r(0) we obtain

|y∗
i | ≤ const·(ε · r + r2) for all i with λ̃i < 0 (stable directions!).

(cf. Figure p. 4) A similar lemma holds for the ”flat stable manifold”.

Remark: The numerical conditions to be assumed may be strengthend

(spectral gap assumptions) in order to guarantee that

Wu(y0) ∩ B2r(0) is in fact a graph over the linear subspace of

unstable eigenfunctions.
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Transport of the unstable manifold of the repeller

Clearly the estimates obtained for (2) can be used for (1) near the

equilibria xR (repeller) and xA (attractor). In order to bring that

information together we somehow have to transport the unstable

manifold (or at least the relevant part of it) into a neighborhood of

xA.
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Let τ > 0 and Φτ : R
n → R

n be the flow corresponding to ẋ = f(x).

Then an enclosing algorithm Aτ : Gn → Gn has the property

Φτ (S) ⊂ Aτ (S) for all S ∈ Gn ,

where Gn contains ”generalized cubes” in R
n.

I.e. we deal with numerical approximations which in a certain sense

enclose the exact quantities (our implementation uses the

CAPD–library of Zglicszynski & Wilczak).
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The next figure illustrates the part IR of B
‖·‖∞

r (x̃R) which contains

the relevant part of W u(xR) and therefore has to be transported by

Aτ into a neighborhood of xA.
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2 · ηW u(xR)

x̃R
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UR

Neighborhood of x̃R

xR with index Σ2

(n = 3 and k = 2)

IR corresponds to the Poincaré section PR, but is small orthogonal to

Wu(xR) and thickened in the direction of the heteroclinic.
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With Aτ we transport

• The whole set IR

• Faces of IR

• In particular those faces of IR which contain parts of W u(xR).

Ahx̃R

IR

ε

Ah(R
1
1)

SA

Ah(R
−1
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w̃1
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w̃3

IR is transported to a

neighborhood of x̃A

(near PA)
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Intersection of W u(xR) and W s(xA)

Goal:

Formulate conditions on the images of Aτ which guarantee

Wu(xR) ∩ W s(xA) 6= ∅, and therefore the existence of a heteroclinic

connection.

Assumptions:

(A1) Aτ is an enclosing algorithm for ẋ = f(x), x ∈ R
n

(A2) W̃u(xR) := Wu(xR) ∩ IR is ”clamped” in IR from boundary to

boundary, that is between faces which correspond to unstable

directions (cf. Figure p. 11)

(A3) W̃ s(xA) := W s(xA) ∩ PA is similarly ”clamped” between

boundaries in the Poincaré section of the attractor. (for k = 0;

i.e. xA stable, we assume B
‖·‖∞

r (xA) ⊂ W s(xA).)
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Theorem 1: (Σ1
→ Σ0)

Assume xR and xA have Morse index Σ1 and Σ0, respectively. We

assume besides (A1) – (A3) that

(A4) For sufficiently large τ > 0 we have Aτ (IR) ⊂ Br(x̃
A)

Then Φτ

(

W̃u(xR)
)

∩ W s(xA) 6= ∅, i.e. there is a connecting orbit

between xR and xA.

Proof: The enclosing algorithm guarantees that at least one point of

Wu(xR) gets transported into a small neighborhood of xA which is

part of the basin of attraction of xA.
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Theorem 2 (Σ2
→ Σ1)

Assume xR and xA have Morse index Σ2 and Σ1, respectively. We

assume (A1) – (A3). Then W̃ s(xA) = W s(xA) ∩ PA is a n − 2

dimensional curve and separates PA locally into two parts. On the

other hand the intersection of Φ.
(

W̃u(xR)
)

with PA is a

one–dimensional curve. Clearly one can formulate conditions on Aτ

of the faces of IR that guarantee that these two curves lie

”orthogonal” like in the following figure:

Then again

Φ•

(

W̃u(xR)
)

∩ W s(xA) 6= ∅,

yielding a heteroclinic connection.

Proof: Intermediate value theorem.
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Outlook

Besides the cases Σ1 → Σ0 and Σ2 → Σ1 one can also handle the

cases Σn → Σn−1 and Σn−1 → Σn−2 through time reversal.

Therefore, in R
n with n ≤ 4, all transverse heteroclinic connections

may be verified numerically.

Other case are more subtle, because manifolds of codimension two or

more do not separate the space R
n into two parts.

Nevertheless, this is current research at our group (in particular Zofia

Maczynska).
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