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Phase Separation and Transient Patterns

Quenching of homogeneous binary or multi-component alloys

may lead to phase separation generating complicated

microstructures. The resulting patterns are generally a transient

phenomenon and evolve with time.
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Models of Cahn-Hilliard Type

A variety of phenomenological models for such processes have

been proposed over the years:

The classical model is due to Cahn & Hilliard (1958):

ut = −∆(ε2∆u + f(u))

Cook (1970), Langer (1971): Inclusion of stochastic effects

leads to the Cahn-Hilliard-Cook model:

ut = −∆(ε2∆u + f(u)) + σε · ξ

Novick-Cohen (1988): Inclusion of frictional inter-phase forces

leads to the viscous Cahn-Hilliard model:

β · ut − (1 − β) · ε2∆ut = −∆(ε2∆u + f(u))
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Cahn-Hilliard-Cook Nodal Domains

Cahn-Hilliard Model with ε = 0.005 and total mass 0:

Cahn-Hilliard-Cook Model with ε = 0.005, σ = 0.01 and mass 0:

The snapshots are taken at t = 0.0004, t = 0.0012, and t = 0.0036.

The dark regions are the nodal domains {u ≥ 0}, their light

complements represent the nodal domains {u ≤ 0}.
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Homological Analysis of Microstructures

Fundamental problems:

How realistic are these phenomenological models?

Do they reproduce the microstructures accurately?

Is a meaningful quantitative assessment possible?

Algebraic topology provides quantitative information on

complex objects:

The information is invariant under transformations which do

not require cutting or gluing of the object.

Homology groups measure the complexity of the object in

any dimension.

Betti numbers, torsion coefficients, and the Euler

characteristic are coarser measures of this information.
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Homological Analysis of Microstructures

Gameiro, Mischaikow, W. (2005):

For total mass µ, consider the Betti numbers β0 and β1 of the sets

N+(t) = {x ∈ Ω | u(t, x) ≥ µ} and N−(t) = {x ∈ Ω | u(t, x) ≤ µ}

Sample set N+(t) for µ = 0, σ = 0, and t = 0.0036.

The set has β0 = 26 components and β1 = 4 loops.
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Averaged Betti Number Evolution

From 500 simulations for µ = 0 and various values of β and σ
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Homology via Discretization

Fundamental questions:

From a mathematical point of view, the objects of interest —

microstructures or patterns — are manifolds, which are often

defined through level sets of differentiable functions.

To make these objects amenable to a computational

treatment, it is necessary to introduce some sort of finite

discretization.

Yet, how can one be sure that the computational results yield

the correct homology of the underlying geometric object?

Is it enough to choose a sufficiently fine discretization?

If so, can we determine the correct discretization size a-priori?
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Errors Caused by Discretization Effects

Problem:

Certain errors in homology computations which are caused by

discretization effects persist even for finer discretizations — and

are therefore more or less unavoidable.

Example from Computational Homology

by Kaczynski, Mischaikow, and Mrozek (2003):

(a) (b) (a) (b)
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Probabilistic Approach for Manifolds

Is it possible to determine the likelihood of success or failure of

performing a homology computation with a given discretization?

Niyogi, Smale, Weinberger (2004): Homology of manifolds

Choose sample points x1, . . . , xn from the given manifold M
in R

d according to the uniform probability measure on it.

For some ε > 0, consider the union of all balls with radius ε

and centers at the points xk, i.e.,

U =
n
⋃

k=1

Bε (xk)

Using the nerve lemma one can show that for suitable xk

and suitable ε the homologies of U and M coincide.
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Probabilistic Approach for Manifolds

Crucial manifold parameter: Condition number 1/τ

The inverse condition number τ is the largest number such

that the open normal bundle about M ⊂ R
d of radius r is

embedded in R
d for all r < τ .

The condition number encodes both local curvature

information and global separation information.

(a) (b) (c)
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Probabilistic Approach for Manifolds

Main result in Niyogi, Smale, Weinberger (2004):

Let M be a compact manifold in R
d with condition number 1/τ ,

and let x1, . . . , xn ∈ M be drawn in i.i.d. fashion according to the

uniform probability measure on M. Let 0 < ε < τ/2 and let U
denote the union of the balls Bε(xk), k = 1, . . . , n. Then for all

n > β1 · ln
β2

δ

the homology of U equals the homology of M with probability at

least 1 − δ. The constants are given by

θ = arcsin
ε

2τ
, β1 =

vol(M)

cosd θ · vol(Bε)
, β2 =

vol(M)

cosd θ · vol(Bε/8)
.
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Probabilistic Approach for Manifolds

Implications of Niyogi, Smale, Weinberger (2004):

The explicit probability estimate depends on the sample size

and on the central manifold parameter which relates to its

curvature and global separation.

The result provides a-priori information on choosing a suitable

discretization size — the number of points in the random

sample, if the condition number can be estimated.

The probabilistic aspect is introduced by choosing a random

sample of points on the manifold.

Mischaikow, Nanda (2006):

Extension of the above result to cover the homology of maps

between Riemannian manifolds.
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Homology of Nodal Domains

Practical considerations:

For simulations such as the ones described earlier, the

function values are known only on a fixed regular grid which

is determined by the numerical method.

The nodal domains are not given directly, only implicitly.

Determining or estimating the condition number of the nodal

domains {u ≥ 0} and {u ≤ 0} of a function u seems difficult.

The condition number vanishes whenever the topology

changes.

On the other hand, there is a natural notion of randomness

intrinsic to the problem:

Random ensemble of initial conditions,

Stochastic evolution equation.
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Random Fourier Series

Typical situation:

For evolution equations (deterministic or stochastic) with

random ensembles of initial conditions, the solution at some

point in time is given as a random Fourier series

u(x, ω) =

∞
∑

k=0

αk · gk(ω) · ϕk(x)

The numbers αk are real constants, the random variables gk

are independent, and the functions ϕk : I → R, k ∈ N0, form a

complete orthogonal set in the considered function space.

We are interested in the homology of the nodal domains

N±(ω) = {x ∈ I : ±u(x, ω) ≥ 0}
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Homology via Discretization in 1D

Computing the homology of nodal domains:

Let I = [a, b] ⊂ R and consider the random nodal domains

N±(ω) = {x ∈ I = [a, b] : ±u(x, ω) ≥ 0}

Consider the discretization of I of size M given by

xk = a + k · b − a

M
, k = 0, . . . , M

With this discretization we associate the random cubical

complexes

Q±(ω) =
⋃

{[k, k + 1] : ±u(xk, ω) > 0}
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Homology via Discretization in 1D

P
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Assumptions on the Random Field

We assume that u : I × Ω → R is almost surely continuous and

(1) For every x ∈ I we have

P {u(x) = 0} := P {ω : u(x, ω) = 0} = 0

(2) We have

P {u(·) : I → R has a double zero in I} = 0

(3) For x ∈ I and δ > 0 with x + δ ∈ I let

pσ(x, δ) = P

{

σ · u(x) ≥ 0 , σ · u
(

x +
δ

2

)

≤ 0 , σ · u(x + δ) ≥ 0

}

Then there exists a constant C0 > 0 such that

p±1(x, δ) ≤ C0 · δ3 for all x, x + δ ∈ I
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Abstract Probability Estimate

Mischaikow, W. (2006):

Consider an almost surely continuous random field u : I × Ω → R

on the interval I = [a, b], satisfying Assumptions (1), (2), and (3).

Then the probability P that the homology of N±(ω) is computed

correctly with the discretization of size M satisfies

P ≥ 1 − 8C0(b − a)3

3M2

where C0 denotes the constant from Assumption (3).

For most concrete applications, Assumptions (1) and (2) can be

verified easily. Only Assumption (3) usually requires some work.
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Application to Periodic Random Fields

The study of evolution equations with periodic boundary

conditions leads to classical random Fourier series of the form

u(x, ω) =
∞
∑

k=0

ak · (g2k(ω) · cos(kx) + g2k−1(ω) · sin(kx))

In particular, if we concentrate on linear evolution equations

with Gaussian ensembles, then we can assume that the random

variables gk are independent and normally distributed with

mean 0 and variance 1.

In this case, the series u(x, ω) is a homogeneous Gaussian

random field with mean 0 and spatial covariance function

R(x, y) = r(x − y) =

∞
∑

k=0

a2
k · cos(k(x − y))
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Result for Periodic Random Fields in 1D

Mischaikow, W. (2006):

Consider the random Fourier series u as before and assume that

∞
∑

k=0

k6a2
k < ∞ and ak1

6= 0 , ak2
6= 0 for k1 < k2

Then the probability P that the homology of N±(ω) is computed

correctly with the discretization of size M satisfies

P ≥ 1 − π2

6M2
· A2A0 − A2

1

A
3/2
0 A

1/2
1

+ O

(

1

M4

)

where

A` =
∞
∑

k=0

k2`a2
k =

1

2π
· E
∥

∥D`
xu
∥

∥

2

L2(0,2π)
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Result for Periodic Random Fields in 1D

What does the result imply?

The result provides explicit probability estimates for the

correctness of the homology computation.

The probability estimate depends on the discretization size

and on central parameters of the random field which relate

to its smoothness properties and to its derivatives up to

second order.

The result provides a-priori information on choosing a suitable

discretization size.

How sharp is this estimate?
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Application: Finite Trigonometric Sums

Any random trigonometric polynomial of the form

u(x, ω) =

N
∑

k=1

ak · (g2k(ω) · cos(kx) + g2k−1(ω) · sin(kx))

has at most 2N zeros. In this situation our result furnishes:

The probability P that the homology of the random nodal

domains N±(ω) is computed correctly with the discretization of

size M satisfies

P ≥ 1 − 2
√

3π2

135
· N3

M2
+ O

(

1

M4

)

In order to compute the homology correctly with high

confidence we need to choose M ∼ N3/2.
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Application: Finite Trigonometric Sums

Numerical results

confirm M ∼ N3/2.
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Shown are the expected number of zeros, the expected value of

2π/dmin, where dmin is the minimal distance between two zeros,

the value of M for which 95% of the functions have minimal

distance at least 2π/M , and the value of the discretization size M

for which the probability estimate yields P = 95%. For each N we

considered 15,000 random trigonometric sums.
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Application: Linear Cahn-Hilliard Model

The solution of the linearized Cahn-Hilliard equation originating

at a Gaussian random field is given by

u(x, ω) =
∞
∑

k=1

eλkt · ak · (g2k(ω) · cos(kx) + g2k−1(ω) · sin(kx))

where λk = k2(1 − ε2k2). In this situation one obtains the

probability estimate

P ≥ 1 − π2

6ε3M2
· C
(

t

ε2

)

+ O

(

1

M4

)

for some ε-independent, decreasing function C with C(1) ≈ 1/5.

In order to compute the homology correctly with high

confidence we need to choose M ∼ ε−3/2.
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Towards a Two-dimensional Result

Can this result be generalized to two-dimensional domains?

3. Homology Accuracy for Nodal Domains – p. 26



Random Fourier Series in 2D

Consider a random Fourier series on Ω = [0, 2π]2 of the form

u(x, ω) =
∞
∑

k,`=0

ak,` · (gk,`,1(ω) cos(kx1) cos(`x2)+

+ gk,`,2(ω) cos(kx1) sin(`x2)

+ gk,`,3(ω) sin(kx1) cos(`x2)

+ gk,`,4(ω) sin(kx1) sin(`x2))

The random variables gk,`,m are independent and normally

distributed with mean 0 and variance 1. There are integers

k1, `1 ∈ N and k2, `2 ∈ N0 with k1 6= k2 and `1 6= `2 such that

both ak1,`1 6= 0 and ak2,`2 6= 0, and in addition

∞
∑

k,`=0

(

k6 + `6
)

a2
k,` < ∞
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Preliminary Probabilistic Result in 2D

Mischaikow, W. (2006):

The probability P that the homology of N±(ω) is computed

correctly with the discretization of size M satisfies

P ≥ 1 − 3π2

4M
·
(

A0,2A0,0 − A2
0,1

A
3/2
0,0 A

1/2
0,1

+
A2,0A0,0 − A2

1,0

A
3/2
0,0 A

1/2
1,0

)

− 32π2

9M2
·

A
3/2
1,1

A
1/2
0,0 A

1/2
0,1 A

1/2
1,0

+ O

(

1

M3

)

,

where

Ap,q =

∞
∑

k,`=0

k2p`2qa2
k,` =

1

4π2
· E
∥

∥Dp
x1

Dq
x2

u
∥

∥

2

L2(0,2π)

This result is suboptimal and cannot be generalized to higher

dimensions! But there is room for improvement...
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Validated Homology Computations

Day, Kalies, W. (2006):

Numerical validation of homology computations

For nonlinear problems obtaining precise probabilistic

bounds seems difficult.

Check whether the correctness of the homology can be

validated computationally.

In some cases, validation may be impossible.

Use interval arithmetic to obtain rigorous function value and

gradient bounds.

Preliminary results indicate that validation is possible in most

cases for which the homology is correct.
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Validated Homology Computations

In the yellow squares the validation was impossible.
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