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Outline of this talk
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A Model Problem - Kuramoto-Sivashinsky
PDE

Consider the Kuramoto-Sivashinsky (KS ) eq.

where (t,z) € [0,00) X R subject to periodic
and odd boundary conditions
u(t,0) u(t,2m)
u(t,—xr) = —u(t,x)

For various values of v a variety of dynamics,

fixed points,
periodic orbits,
heteroclinic orbits,
chaotic dynamics,

have been observed numerically.

Goal: A rigorous means of proving these nu-
merical results.



A Model Problem - Kuramoto-Sivashinsky
PDE, Fourier expansion

Fourier expansion is: u(t,z) = .92 _ by (t)ek®

Substituting in KS and applying boundary con-
ditions gives:

k—1 o0
ap, = k°(1—vk?)a,—k Y anap_p+2k Y ana,tp
n=1 n=1

where b, = ta, and k=1,2,3,....
Linearization: aj = k2(1 — vk?)ay

e k-th mode is unstable for k < -
Vv

e k-th mode is stable for k > 1
NG,

e the modes with k£ >> -1 should be irrele-
Y42
vant for the dynamics



A Model Problem - Kuramoto-Sivashinsky
PDE, known results

Known results:

e the existence of global attractor, the func-
tions from attractor are analytic - Fourier
series converge at geometric rate (Foias,
Temam)

e the existence of finite dimensional inertial
manifold (Foias, Nicolaenko, Sell, Temam,
Rossa, Jolly) ( not of much use in rigorous
numerics)

No analytical results dynamics more compli-
cated than fixed points bifurcating from zero
solution



Our rigorous results for
Kuramoto-Sivashinsky PDE

e the existence of multiple periodic orbits for
various parameter values v ~ 0.1215, 0.1212,
0.125, 0.032, 0.02991, both stable and un-
stable orbits

e the existence of multiple fixed points for
various values o f v and their bifurcations
(joint with K. Mischaikow)

e the existence of attractive fixed points for
various values of v



Periodic point for KS-equation
p=0.127

Symmetric attracting orbit

Theorem: Let ug(z) = Y12, —2a; sin(kz), where
ap, are given in table below. There exists a
function u*(¢,z) , the classical solution of KS
for v = 0.127, such that

||u0 R U*(Oa ')HLQ <3.1: 10_47
lug — u*(0,)||co < 6.5- 1074

such that «* is periodic with respect to t.

a1 = 2.012088e — 01 ax = 1.289978

a3 = 2.012152e — 01 | a4 = —3.778654e — 01
as = —4.231056e — 02 | ag = 4.316137e — 02
a7 = 6.940373e — 03 | ag = —4.156441e — 03
ag = —7.945097e — 04 | a10 = 3.315994e — 04

Proof uses Brouwer Thm. and rigorous integration of
KS-PDE



Periodic point for KS-equation
pn=0.1215

non-symmetric attracting orbit past period dou-
bling

Theorem: Let ug(z) = X123, —2ay sin(kx), where
ap, are given in table below. There exists a
function u*(¢,z) , the classical solution of KS

for v = 0.1215, such that

||UO o u*(oa ')HLQ <9.9- 10_57
lug — u*(0,)||po < 6.2-107°
such that «™* is periodic with respect to t.

a1 = 2.559310e — 01 a> = 1.096696

a3z = 2.559302¢ — 01 as = —3.079615e — 01
as = —4.780276e — 02 ag = 3.002052¢ — 02
a7 = 7.352633e¢ — 03 ag = —2.530197¢ — 03
ag = —7.561938e — 04 aig = 1.624861e — 04
a11 = 6.833008e — 05 | a1p = —8.789182¢ — 06
a13 = —5.429523¢ — 06

Proof uses Brouwer Thm. and rigorous inte-
gration of KS-PDE



Periodic point for KS-equation
uw=0.1215

Symmetric unstable orbit, past period doubling

Theorem: Letug(z) = XrL, —2a;sin(kz), where
a;, are given in table below. There exists a
function u*(¢,z) , the classical solution of KS
for v = 0.1215, such that

lup — u*(0,-)||z, < 1.27 - 1073,
lug — u*(0,)|lco < 8.26 - 1074

such that v™* is periodic with respect to t.

a1 = 2.450027e¢ — 01 a> = 1.041500e + 00
a3z = 2.449985¢ — 01 as = —2.760754¢ — 01
as = —4.371320e — 02 | ag = 2.531380e — 02
a7 = 6.345919¢ — 03 ag = —1.996779e¢ — 03
ag = —6.177148e — 04 | a10 = 1.184863¢ — 04
a11 = 5.269771e — 05

Proof uses Miranda Thm. and rigorous inte-
gration of KS-PDE, the orbit is apparently un-
stable



Periodic point for KS-equation
u = 0.032

symmetric attracting orbit, close to chaotic re-

gion

Theorem: Let ug(z) = Y22 ; —2aysin(kz), where
a;, are given in table below. There exists a
function u*(¢,z) , the classical solution of KS
for v = 0.032, such that

||u0 R U*(Oa ')HLQ <3.9: 10_47
lug — u*(0,-)||po < 9.5- 1074
such that v™* is periodic with respect to t.

a1 = 3.506682¢ — 01
az = 3.506665e — 01
as = —1.115325e + 00
a7 = 4.603873e — 01
ag = —3.115024¢ — 01
a11 = 5.104894¢ — 02
a13 = —3.413293¢ — 02
ais = 1.307623e — 03
a7 —2.115586e — 03
aio —5.007345¢ — 04
a1 —4.423567¢ — 05
an3 —9.029570e — 05

ar>» = 2.522889e — 02
as = —2.276745e + 00
ag —3.693057e — 01
as —4.604564¢ — 01
aio —1.449674¢ — 01
1o —2.165916¢e — 02
aiq —2.613508e — 02
a1 = 8.752424¢e¢ — 05
aig = —2.891477e — 03
as>g = 3.374289¢ — 05
aro = —2.280484¢ — 04
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The method of self-consistent bounds

H - Hilbert space,
e1,eo,... - an orthogonal basis in H
The corresponding projections are

pm:PmCL — (a]_,CLQ,...,CLm)
dm — Qma — (am—|—17 Am+-2, - - )
The problem:

a = F(a) (1)

F is not continuous, with dense domain in H.
Fj. o P, is a Cl-function for n,k € N

Later F(a) = L(a) + N(a), L - linear, N- non-
linear
e1,eo,... - eigenvectors of L - very helpful
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The method:

Def. Fix m,M ( m < M). A compact set

W C P, (H) and a sequence of pairs {af e R |

a, < a,j', k € ZT)} are self-consistent a-priori

bounds for F' if:

Cl For k> M, a,;<0<a,;|_.
C2 Let a .= max|af| and set u = Y72, agey.
Then, u e H, ({a,} €1>)

C3 The function u— F(u) is continuous on

0. @)
wao [ leg,a]cCH.
k=m-1
Moreover, if we define

fi. = max o |F.(u)| and set

! ueWel izl
Ff=73 frer, then fc H. ({fi} €l>)

Notation: T = [I5,,, 1 laj ,a;] - Tail
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ISOLATION for n > m

Forae W T and kK > m holds

akzalj_ = a <0
ap = aj, = ag >0

C1,C2,C3 - give convergence
C4 - gives a priori bounds

C1,C2,C3,C4 - easy to satisfy (later)
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Finite dimensional rigorous computations in m
first variables

Basic Differential Inclusion:

where 'y, = {PmF(p+q) — PnF(p) | ¢ € T}

We say a multivalued map py : [0,h] — H is
upper attainable set (uas) map for (2) if the
following is true

e any C! function satisfying (2) and defined
on the maximum interval of existence is
defined on [0, A]

e if a Cl-function p : [0,h] — X,, satisfies
(2), then p(t) € p;(t) for t € [0, h]
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Theorem: Assume W @ T are self-consistent
bounds for F. If p;y: [0,t1] —» Xm = Pn(H) is
uas map for (2), such that p;([0,¢t1]) C W.

Then for any gqg € T, the problem u = F(u)
(and all its Galerkin projections v = P,F(u),
n > M) has a solution u(t) = (p(t),q(t)) for
t € [0,t1], such that

p(t) € pr(t), q(t) € T, for t € [0, t1]
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Why it is a easy to find a good tail =

self-consistent bounds

ut = Lu+ N(u,Du,...,D"u)

x € T" (periodic boundary conditions),
L - linear, diagonal, N - polynomial

Fourier expansion u(t) = X pegzn a(t)e =

Lemma. Let s > sg. If |ar| < C/|Kf],
then there exists D = D(C, s)

ag| < C,

[Ni| < No| £ D

i

Isolation. Assume L(a)i = —|k|Pay, p > r.
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d|ag|
dto < —|kolPlagy| + [Npy(a)| <

—Clkg|P™% 4+ Dlko|"™*
dlag,|
dt

<0, |kg| > M



Rigorous integration for dissipative
PDEs

(z,y) € Xm @ Y, C H - Hilbert space,

dimX,;, = m < oo, dimYy,, < oo

Py, : H — H, projection onto Xm;m, Qm = I — Pn,
F - our PDE in some basis on H

t' = PF(z,y) (3)
y' = QF(z,y) (4)
Idea: Replace (3 - 4) by
z'(t) € PmF (x(t), Tail(t)) (5)
y(t) € Taul(t), (6)

where Tail(t) has finite representation and can
be computed in finite humber of operations.
Tail,(t) should decay fast enough.

We want also that: x(t) @ Pn.QmTail(t), for
n > M , is a rigorous estimate to n-dimensional
Galerkin projection of F', for the initial condi-
tion £(0) @ P,QmTail(0)
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Integration of dissipative PDEs - II

z'(t) € P F(z(t), Tail(t)) (7)
y(t) € Tail(t), (8)
v’ = P, F(x) - Galerkin projection, induces o,

One time step:
initial condition Z @ Tail(0) C X @ Ym, h >0
1 e find W @ T[0, h] (rough enclosure)

PnF(x,y) — PhF(x,0) C T, =
@m,r([oah]az) c W
Tail([O,h]) C TI[O,h].

2 e instead of (7) consider 2/ € P, F(x,0) + T
- use algorithm for differential inclusions, to
obtain z(h) for (x,y) € Z ® Tail(0).

3 e compute Tail(h).
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Representation used for KS equation

We |look for solutions in

k<M -¢ C
W@T:W@ﬂk;m+1@nk>M[ks ‘78

| ©
where W C Xp,.

Ny(W®T) C [N, N1, k=m+1,...,M
—-DWaoT) DIWaT)
N,(WaT) C 52 2 , k> M

We solve (estimate rigorously) the solutions of
the following system of differential inclusions

' € PpF(x)+T, t €W C Xm
o € Mgz + [N, NI, k=m+1,...,

xp, for k> M are given by a single formula.
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Rigorous integration for ODEs and

differential inclusions - basic principles

reR” f:R*" > R"-Cl,
' = f(z), x(0)=zg (ODE)
induces ¢(t,zg) € R™

One time step:
initial condition: Xg C R™, h > 0 is a time step
1le find W C R"™ (rough enclosure), such that
¢([0,h], Xo) CW

2e apply the Taylor method to (ODE), evalu-
ate the error term on W to obtain X7 C R",
such that

e(h, Xg) C X1
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Rigorous integration for ODEs -

comments

e all computations are performed in interval
arithmetic

e one should be very careful in the way how
step 2 is executed, straightforward interval
evaluation leads to the wrapping effect.

e we use the Lohner algorithm
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Rigorous integration of differential
inclusion

Differential inclusion : I ¢ R"®

' e f(z)+T, z(0)==zxg
induces o (t,zg9) C R™

One time step:
initial condition: Xg C R"™, h > 0 is a time step
le compute X1, such that ¢(h, Xp) C X3

2e find W C R™ (rough enclosure), such that
Sor([oa h]aXO) C W27 S XO
3e use Gronwall type lemma to find A C R",

pr(h,z) —p(h,z) € A
This step requires %(WQ}

Ae
Spl_(haXO) C X1+ A

22



Differential inclusions - Fundamental

Lemma

For a fixed y. € R™"2 we compare the solutions
of two ODEs

f(xlayc)a
f(x2,yc) + (f(z2,y(t)) — f(x2,¥c))
r1(tg) = z2(tg) = xg

/
L1

/
Lo

where y(t) is given (but unknown) function.
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Lemma: Let:

[Wy] € R™2, convex, y([tg,to + h]) C [Wy].

[W1] C [W5] € R™ - convex and compact.
r1([to,to+h]) C [W1], zo([tg, to+h]) C [W>] for
any continuous function y : [tg,tg + h] — [Wy].

Then the following inequality holds for t € [tg, to+
h] and fori=1,...,n1

7

21,4(8) — 22,i()] < ( [ eJ“—S)ods) . (10)

o
where

>
|

{f(z,yc) — f(z,y) |z € [Wil,y € [Wyl},

Ci > suplld]], i=1,...,nq
of; e
Ty > sup ST IWDIf i = 5,
Ly
Ofi e
Jij > sup ([Wa], [Wy])|if i # 3.

Ty
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Tail evolution

Our problem a; = Agay + Ni(a),
A, — —oo, for |k| = oo

W, T([O,h]) - the rough enclosure for Z®T(0)
for t € [0, h]

For &k > m we have

NF = NE(W, T([0, R]))

_ d
Akak_I_Nk < % < )\kak+N+,

hence
N:l:
by = _—fk (11)
T(h)y = (T —bf) e +b (12)

It remains to put T'(h) for £k > M in the form

+C(T'(h))
ks(T(h))

T(h)y =
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For kK > M we have

Lo

0 < b < (b)
L C(T0)
IO = @

T(h);" < T(0):e " + b,

£ C(O) an, CO)
k s(T(0)) © ks(b)’

T(h);F

Let
E = eMv+1(pr 4 1)3(0)—s(T(0)),

then (modulo some conditions on M, h)
E
Ak
< k> M
T ORFGA () M
and finally we can set

C(T(O))E + C(b)
ks(b)

T:E(h) =

26



About the computations

e gnu CH++

e interval arithmetic - from CAPD package
devoloped in Krakow, Poland

e we use the Lohner algorithm to integrate
differential inclusions
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Some computation data

On 3GHz machine, Linux, gnu C+4+-+

e v =0.127, m =10, M =3 *xm, h = le — 3,
order = 4, T/2 ~ 1.12, computation time
around 10 sec

o v =0.1215 m =13, M = 3xm, h = 4e—4,
order = 6, T ~ 3.07, computation time
around 240 sec

e »y = 0.032, m =23, M =3xm, h = 1.5e—4,
order = 5, T/2 ~ 0.41, computation time
around 300 sec
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Conclusions

e rigorous numerics for dissipative PDEs is
possible

e global existence and unigueness theorems
are not required, interesting solutions are
constructed

e could be applied to (I hope): Ginzburg-
lLLandau, Navier-Stokes in 2D and 3D
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Future work

e prove chaos (symbolic dynamics) for KS v ~
0.029 or v = 0.1212

e Construct an rigorous Cl-algorithm for dis-
sipative PDE.

This will make possible to rigorously apply a
lot of dynamical system theory to dissipative
PDEs.
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